The Inconstant Sun—Representation of the Solar System at different Epochs—PrimÆval Density of the Sun—Illustration of Gas in Extreme Tenuity—Physical State of the Sun at that Period—The Sun was then a Nebula. WE pointed out in the last chapter how, in consequence of its perennial loss of heat, the orb of day must be undergoing a gradual diminution in size. In the present chapter we are to set down the remarkable conclusions with respect to the early history of the sun to which we have been conducted by pursuing to its legitimate consequences the shrinkage which the sun had undergone in times past. The outer circle in Fig. 19 represents the track in which our earth now revolves around the sun, and we are to understand that the radius of this circle is about ninety-three million miles. We must imagine that the innermost of the four circles represents the position of the sun. Along its track the earth revolves year after year; so it has revolved for centuries, so it has revolved since the days of the first monarch that ever held sway in Britain, so it has revolved during all the time over which history extends, so it has doubtless revolved for Fig. 19.—To Illustrate the History of the Sun. The sun appears constant during those few years in which man is allowed to strut his little hour. The size of the sun and the lustre of the sun has not appreciably altered. But the sun does not always remain the same. It has not always shone with the brightness and vigour with which it shines now; it will not continue for ever to dispense its benefits with the same liberality that it does at present. The sun is always in a state of change. It We have already shown how to give numerical precision to our facts. We have stated that the sun’s diameter is diminishing at the rate of one mile every eleven years. We have dwelt upon the remarkable significance of that shrinkage in accounting for the sustentation of the sun’s heat. We have now to call on this perennial diminution of the sun’s diameter to provide some information as to the early history of our luminary. The innermost circle in our sketch is to suggest the sun as it is at present. Millions of years ago the orb of day was as large as I have indicated it by the circle with the words “sun in very early times.” It will, of course, be understood that we do not make any claim to precise representation of the magnitude of the orb. At a period much earlier still, the sun must have been larger still, and we venture so to depict it. We know the rate at which the sun is now contracting, and doubtless this rate has continued sensibly unaltered during thousands of years, and indeed we might say scores of thousands of years. But it would not be at all safe to Let us now consider what the density of the sun must have been in those primÆval days, say, for example, when the luminary had ten times the volume that it has at present. Even now, as already stated, it does not weigh half as much again as a globe of water of the same size, so that when it was ten times as big its density must have been only a small fraction of that of water. But we may take a stage still earlier. Let us think of a time—it was, perhaps, many scores of millions of years ago—when the sun was a thousand times as big as it is at present. The same quantity of matter which now constitutes the sun was then expanded over a volume a thousand times greater. A remarkable conclusion follows from this consideration. The air that we breathe has a density which is about the seven-hundredth We must push our argument further still. We have ascertained that the primÆval sun could not have been a dense solid body like a ball of metal. It must have been more nearly represented by a ball of gas. There was a time when that collection of matter which now constitutes the sun was so big that a balloon of equal size, filled at ordinary pressure with the lightest of known gases, would contain within it a heavier weight than the sun. At this early period the sun must have been as light as an equal volume of hydrogen. The reasoning which has conducted us to this point remains still unimpaired. From that early period we may therefore look back to periods earlier still. We see that the sun must have been ever larger and larger, for the same quantity of material must have been ever more and more diffused. There was a time when the mean density of the sun must have been far less than that of the gas in any balloon. We must not pause to consider intermediate stages. We shall look back at once to an excessively early period when the sun—or perhaps we ought rather to say the matter which in a more Fig. 20.—The Solar Corona (January 1st, 1899). I need hardly say that the sun at that early date did not at all resemble the glorious orb to which we owe our very existence. The primÆval sun must have been a totally different object, as we can easily imagine if we try to think that the sun’s We can give a familiar illustration of gas in a state of extreme tenuity. Look at the beautiful incandescent light with which in these days our buildings are illuminated. How brilliantly those little globes shine! The globe has to be most carefully sealed against the outside air. If there were the smallest opportunity for access, the air from outside would rush in and the lamp would be destroyed. In the preparation of such a lamp elaborate precautions have to be taken to secure that the exhaustion of the air from the little globe shall be as nearly perfect as possible. Of course it is impossible to remove all the air. No known processes can produce a perfect vacuum. Some traces of gas would remain after the air-pump had been applied even for hours. We must now imagine a globe, not merely two inches in diameter like one of these little lamps, but a globe 186,000,000 miles in diameter, a globe so large that the earth’s orbit would just form a girdle round it. Even if this globe had been exhausted, so that its density was only the twelve-thousandth part of the ordinary atmospheric density, it would still contain more material than is found in the sun in heaven. Thus our reasoning has conducted us to the notion of an epoch when the sun—or rather I Fig. 21.—The Great Comet of 1882. But it is certain that in those early days there was no earth to be warmed and lighted. Our globe, even if This being so, why should we withhold from the sun of primitive days the designation to which it seems to |