Evolution of other Bodies in the Universe—The NebulÆ—Estimate of the Size of the Great Nebula in Orion—Photograph of that Nebula taken at Lick Observatory—The Dumb-bell Nebula—The Crossley Reflector—The late Professor Keeler—Astonishing Discovery of New NebulÆ—120,000 NebulÆ—The Continuous Chain from a Fluid Haze of Light to a Star—The Celestial Evolution. WE commence this chapter with a scrutiny of the heavens, to see whether, among the bodies which it contains, we can discover any which appear at this moment to be in the condition through which our system has passed in some of its earlier stages. So far as our unaided vision is concerned, we can see little or nothing in the skies which will render us assistance in our present endeavour. The objects that we do see in thousands are, of course, the stars, and, as we have already pointed out, the stars are sun-like objects, and as such have advanced many stages beyond the elementary condition. The stars are therefore not immediately available for the illustration we require. But when we come to look at the heavens through our telescopes we presently find For not only does the telescope reveal myriads of stars which the naked eye cannot detect; not only does it reveal wonderful clusters in which thousands of stars are grouped closely together so as to form spectacles of indescribable magnificence, when we take into account the intrinsic splendour of each star-like point, but it also reveals totally different objects, known as nebulÆ. These objects are not stars and are not composed of stars, but are vast extensions of matter existing in a far more elementary condition. It is to these curious bodies that we invite special attention at present. It is believed that they offer a remarkable illustration of the origin of the solar system. We shall first consider the best known object of this class. It is the Great Nebula in Orion. Fig. 6.—The Great Nebula in Orion (Lick Observatory, California). And here it may be well to give an estimate which will enable us to form some notion of the size of this object. We are accustomed to recognise the stars as presenting the appearance of mere points of light; but an object like the Great Nebula stretches over a wide area of the sky. As to the actual extent of the space which it occupies we cannot speak with confidence. The fact is that with every increase in the power of the telescope the nebula appears to encroach more and more on the darkness of space We shall, I doubt not, still be within the bounds of truth if we say that the nebula extends over an area ten times as great as that represented in this photograph. But we will take only the area of the object as shown in the photograph for the purpose of our calculation. Let us say that the nebula, as it is here represented, covers about two degrees square. I shall not attempt to express in miles the dimensions of an object so vast. I will try to give a conception of the size of the Great Nebula in a different manner. Let us employ the dimensions of our solar system for the purpose of comparison. Let us suppose that we draw, upon the scale of this celestial photograph, a map which shall represent the sun in the centre, the earth at her proper distance from the sun, and Jupiter in his orbit, which is five times the diameter of the earth’s orbit; and then let us mark the other planets at their respective distances, even to Neptune, revolving in his great ellipse, with a diameter thirty times that of the earth’s orbit. Let us then take the area of the orbit described by Neptune as a unit with which to measure the size of the Great Nebula in Orion. We shall certainly be well within the actual truth if we say that a million circles as big as that described by Neptune would not suffice to cover the area that is represented on this photograph. This will give some idea of the imposing dimensions of the Great Nebula in Orion. But I would not have it to be supposed that the Great Nebula in Orion is unique, unless in respect to its convenient position. The circumstances of its situation Among the nebulÆ which possess sufficient individuality to merit study for our present purpose, I must mention the so-called Dumb-bell. This most interesting object can be seen in any good telescope. It requires, however, as indeed do all such objects, an instrument of the highest power to do it justice; in these modern days, however, the eye observation of nebulÆ through great telescopes has been superseded by the employment of the photographic plate. I may take this opportunity of mentioning that a photograph really shows more details in the nebula than can be perceived even by the most experienced eye when applied to the most powerful telescope placed in the most favoured situation as to climate. Those lovers of nature who desire to observe celestial objects through a great telescope, and have not the opportunity of gratifying their wishes, may perhaps derive consolation We have chosen the Dumb-bell (Fig. 7) and the Great Nebula in Orion as characteristic examples of this remarkable class of celestial objects; but there are many others to which I might refer, some of which we represent in these pages. The Crab Nebula (Fig. 3) and others have been distinguished by special names; but I must forbear to dwell further on them, and rather hasten to give the results of recent observations which have enormously extended our knowledge of the nebulous bodies in the universe. Let me first explain the source whence this extraordinary accession to our knowledge has arisen. We owe it to the astronomers at the Lick Observatory, that remarkable institution placed on the summit of Mount Hamilton in California. Many important discoveries had already been made with the noble instruments with which the famous Lick Observatory had originally been endowed by its founder; it is, however, by a recent addition to its magnificent apparatus that the discoveries have been made which are specially significant for our present purpose. Many years ago Dr. A. A. Common, the distinguished English astronomer, constructed an exquisite reflecting telescope of three feet aperture (Fig. 8). With this telescope Dr. Common himself obtained notable results in photographing the heavens, and his success earned the award of the Gold Medal of the Royal Astronomical Society. This telescope passed into the possession of Fig. 7.—The Dumb-bell Nebula (Lick Observatory, California). Professor Keeler’s experience was a remarkable one. He was photographing a well-known nebula with the Crossley Reflector, and he was a little surprised to find that on the same plate which gave him the nebula at which he was aiming there were no fewer than seven other small nebulous objects previously unknown to astronomers. It at first appeared to him that this must be an unusual number of nebulÆ to find crowded together on one plate which covered no more than one square degree of the heavens, an area about five or six times as large as the area of the full moon. Subsequent experience, however, In the remarkable paper from which I have taken these facts Professor Keeler makes an estimate which is founded on the examination of his plates. If the heavens were to be divided into panels, each one square The enormous extension which these investigations have given to our knowledge demands the serious attention of all interested in the heavens. The discoveries of the earlier astronomers had led to the knowledge of about six thousand nebulÆ; the Crossley Reflector at the Lick Observatory has now rendered it practically certain that the number of nebulÆ in the heavens must be at least twenty-fold as great as had been hitherto supposed. Fig. 8.—The Crossley Reflector (Constructed by Dr. A. A. In subsequent chapters we are to present the evidence for the belief that this earth of ours, as well as the sun and all the other bodies which form the solar system, did once originate in a nebula. According to this view the materials which at present are found in Though no eye has seen the actual stages in the grand evolution of our solar system, we may at least witness parallel stages in the evolution through which some of the myriads of other nebulÆ are now passing. We find some of these nebulÆ in that excessively diffused condition in which they are devoid of visible structure. Material in this form may be regarded as the primÆval nebula. There is at least one of these extraordinary objects which is larger a great deal than even the Great Nebula in Orion, but altogether too faint to be seen except by the photographic plate. Here we find, as it were, the mother-substance in its most elementary stage of widest possible diffusion, from which worlds and systems, it may be, are yet to be evolved. From diffused objects such as shown in Fig. 5 we can pass to other nebulÆ in which we see a certain advance being made in the process by which the nebula is |