Introduction.—The Compensating Pendulum.—The Escapement.—The Train of Wheels.—The Hands.—The Striking Parts. INTRODUCTION.659. We come now to the most important practical application of the pendulum. The vibrations being always isochronous, it follows that, if we count the number of vibrations in a certain time, we shall ascertain the duration of that time. It is simply the product of the number of vibrations with the period of a single one. Let us take a pendulum 39·139 inches long; which will vibrate exactly once a second in London, and is therefore called a seconds pendulum (See Art. 607). If I set one of these pendulums vibrating, and contrive mechanism by which the number of its vibrations shall be recorded, I have a means of measuring time. This is of course the principle of the common clock: the pendulum vibrates once a second and the number of vibrations made from one epoch 660. One duty of the clock is therefore to count and record the number of vibrations, but the wheels and works have another part to discharge, and that is to sustain the motion of the pendulum. The friction of the air and the resistance experienced at the point of suspension are forces tending to bring the pendulum to rest; and to counteract the effect of these forces, the machine must be continually invigorated with fresh energy. This supply is communicated by the works of the clock, which will be sufficiently described presently. 661. When the weight driving the clock is wound up, a store of energy is communicated which is doled out to the pendulum in a very small impulse, at every vibration. The clock-weight is just large enough to be able to counterbalance the retarding forces when the pendulum has a proper amplitude of vibration. In all machines there is some energy lost in maintaining the parts in motion in opposition to friction and other resistances; in clocks this represents the whole amount of the force, as there is no external work to be performed. THE COMPENSATING PENDULUM.662. The actual length of the pendulum used, depends upon the purposes for which the clock is intended, but it is essential for correct performance that the pendulum should vibrate at a constant rate; a small irregularity in this respect may appreciably affect the indications of the clock. If the pendulum vibrates in 1·001 seconds 663. For accurate time-keeping it is therefore essential that the time of vibration shall remain constant. Now the time of vibration depends upon the length, and therefore it is necessary that the length of the pendulum be absolutely unalterable. If the length of the pendulum be changed even by one-tenth of an inch, the clock will lose or gain nearly two minutes daily, according to whether the pendulum has been made longer or shorter. In general we may say that, if the alteration in the length amount to k thousandths of an inch, the number of seconds gained or lost per day is 1·103×k with a seconds pendulum. 665. Let us suppose that the length of the pendulum has been properly adjusted so that the clock keeps accurate time. It is necessary that the pendulum should not alter in length. But there is an ever-present Fig. 97. 666. We have here a brass bar a yard long; it is at present at the temperature of the room. If we heat the bar over a lamp, it becomes longer; but upon cooling, it returns to its original dimensions. These alterations of length are very small, indeed too small to be perceived except by careful measurement; but we shall be able to demonstrate in a simple way that elongation is the consequence of increased temperature. I place the bar a d in the supports shown in Fig. 97. It is firmly secured at b by means of a binding screw, and passes 667. I place the lamp under the bar: which begins to heat and to elongate; and as it is firmly held at b, the point gradually approaches e: it has now touched e; the circuit is complete, and the bell rings. If I withdraw the lamp, the bar cools. I can accelerate the cooling by touching the bar with a damp sponge; the bar contracts, breaks the circuit, and the bell stops: heating the bar again with the lamp, the bell again rings, to be again stopped by an application of the sponge. Though you have not been able to see the process, your ears have informed you that heat must have elongated the bar, and that cold has produced contraction. 668. What we have proved with respect to a bar of brass, is true for a bar of any material; and thus, whatever be the substance of which a pendulum is made, a simple uncompensated rod must be longer in hot weather than in cold weather: hence a clock will generally have a tendency to go faster in winter than in summer. 669. The amount of change thus produced is, it is true, very small. For a pendulum with a steel rod, the difference of temperature between summer and winter would cause a variation in the rate of five seconds daily, or about half a minute in the week. The amount of error thus introduced is of no great consequence in clocks which are only intended for ordinary use; but in astronomical clocks, where seconds or even portions of a second are of importance, inaccuracies of this magnitude would be quite inadmissible. Fig. 98. 670. There are, it is true, some substances—for example, ordinary timber—in which the rate of expansion is less than that of steel; consequently, the irregularities introduced by employing a pendulum with a wooden rod are less than those of the steel pendulum we have mentioned; but no substance is known which would not originate greater variations than are admissible in the performance of an astronomical clock. We must, therefore, devise some means by which the effect of temperature on the length of a pendulum can be avoided. Various means have been proposed, and we shall describe one of the best and simplest. 671. The mercurial pendulum (Fig. 98) is frequently used in clocks intended to serve as standard time-keepers. The rod by which the pendulum is suspended is made of steel; and the bob consists of a glass jar of mercury. The distance of the centre of gravity of the mercury from the point of suspension may practically be considered as the length of the pendulum. The rate of expansion of mercury is about sixteen times that of steel: hence, if the bob be formed of a column of mercury one-eighth part of the length of the steel rod, the compensation would be complete. For, suppose the temperature of the THE ESCAPEMENT.Fig. 99. 673. A common form of escapement is shown in Fig. 99. The arrangement is no doubt different from that actually found in a clock; but I have 674. The escapement-wheel is constantly urged to turn round by the action of the weight and train of wheels, of which we shall speak presently; but the action of the pallets regulates the rate at which the wheel can revolve. When a tooth of the wheel falls upon the pallet n, the latter is gently pressed away: this pressure is transmitted by the fork to the pendulum; as n moves away from the wheel, the other pallet h approaches the wheel; and by the time n has receded so far that the tooth slips from it, h has advanced sufficiently far to catch the tooth which immediately drops upon h. In fact, the moment the tooth is free from n, the wheel begins to revolve in consequence of the driving weight; but it is quickly stopped by another tooth falling on h: and the noise of this collision is the well known tick of the clock. The pendulum is still swinging to the left when the tooth falls on h. The pressure of the tooth then tends to push h outwards, but the inertia of the pendulum in forcing h inwards is at first sufficient to overcome the outward pressure arising from the wheel; the consequence is that, after the tooth has dropped, the escapement-wheel moves back a little, or “recoils,” as it is called. If you look at any ordinary clock, which The process we have just described then recurs over again. Each tooth escapes at each pallet, and the escapements take place once a second; hence the escapement-wheel with thirty teeth will turn round once in a minute. 675. When the tooth is pushing n, the pendulum is being urged to the left; the instant this tooth escapes, another tooth falls on h, and the pendulum, ere it has accomplished its swing to the left, has a force exerted upon it to bring it to the right. When this force and gravity combined have stopped the pendulum, and caused it to move to the right, the tooth soon escapes at h, and another tooth falls on n, then retarding the pendulum. Hence, except during the very minute portion of time that the wheel turns after one escapement, and before the next tick, the pendulum is never free; it is urged forwards when its velocity is great, but before it comes to the end of its vibration it is urged backwards; this escapement does not therefore possess the characteristics which we pointed out (Art. 672) as necessary for a really good instrument. But for ordinary purposes of time-keeping, the recoil escapement works sufficiently well, as the force which acts upon the pendulum is in reality extremely small. For The obvious defect in the recoil is that the pendulum is retarded during a portion of its vibration; the impulse forward is of course necessary, but the retarding force is useless and injurious. 676. The “dead-beat” escapement was devised by the celebrated clockmaker Graham, in order to avoid this difficulty. If you observe the second-hand of a clock, controlled by this escapement, you will understand why it is called the dead beat: there is no recoil; the second-hand moves quickly over each second, and remains there fixed until it starts for the next second. The wheel and escapement by which this effect is produced is shown in Fig. 100. a and b are the pallets, by the action of the teeth on which the motion is given to the crutch, which turns about the centre o; from the axis through this centre the fork descends, so that as the crutch is made to vibrate to and fro by the wheel, the fork is also made to vibrate, and thus sustain the motion of the pendulum. The essential feature in which the dead-beat escapement differs from the recoil escapement is that when the tooth escapes from the pallet a, the wheel turns: but the tooth which in the recoil escapement would have fallen on the other pallet, now falls on a surface d, and not on the pallet b. d is part of a circle with its centre at o, the centre of motion; consequently, the tooth remains almost entirely inert so long as it remains on the circular arc d. 677. There is thus no recoil, and the pendulum is allowed to reach the extremity of its swing to the right unretarded; but when the pendulum is returning, the crutch moves until the tooth passes from the circular arc d on to the pallet b: Fig. 100. 678. The operations are so timed that the pendulum receives its impulse (which takes place when a tooth slides down a pallet) precisely when the oscillation is at the point of greatest velocity; the pendulum is then unacted upon till it reaches a similar position in the next vibration. This impulse at the middle of the swing does not affect the time of vibration. 679. There is still a small frictional force acting to retard the pendulum. This arises from the pressure of the teeth upon the circular arcs, for there is a certain amount of friction, no matter how carefully the surfaces may be polished. It is not however found practically to be a source of appreciable irregularity. In a clock furnished with a dead-beat escapement and a mercurial pendulum, we have a superb time-keeper. THE TRAIN OF WHEELS.680. We have next to consider the manner in which the supply of energy is communicated to the escapement-wheel, and also the mode in which the vibrations of the pendulum are counted. A train of wheels for this purpose is shown in Fig. 99. The same remark may be made about this train that we have already made about the escapement,—namely, that it is more designed to explain the principle clearly than to show the actual construction of a clock. 682. The train of wheels serves to transmit the power of the descending weight and thus supply energy to the pendulum. In the clock model you see before you, the weight sustaining the motion is 56 lbs. The diameter of the escapement-wheel is about double that of the barrel, and the wheel turns round sixty times as fast as the barrel; therefore for every inch the weight descends, the circumference of the escapement-wheel must move through 120 inches. From the principle of work it follows that the energy applied at one end of a machine equals that obtained from the other, friction being neglected. The force of 56 lbs. is therefore, reduced to the one hundred-and-twentieth part of its amount at the circumference of the escapement-wheel. And as the friction is considerable; the actual force with which each tooth acts upon the pallet is only a few ounces. 683. In a good clock an extremely minute force need only be supplied to the pendulum, so that, notwithstanding 86,400 vibrations have to be performed daily, one winding of the clock will supply sufficient energy to sustain the motion for a week. THE HANDS.684. We shall explain by the model shown in Fig. 101, how the hour-hand and the minute-hand are made to revolve with different velocities about the same dial. Fig. 101. g is a handle by which I can turn round the shaft which carries the wheel f, and the hand b. There are 20 teeth in f, and it gears into another wheel, e, containing 80 teeth; the shaft which is turned by e carries a third wheel d, containing 25 teeth, and d works with a fourth c, containing 75 teeth, c is capable of turning freely round the shaft, so that the motion of the shaft does not affect it, except through the intervention of the wheels e, f, and d. To c another hand a is attached, which therefore turns round simultaneously with c. Let us compare the motion of the two hands a and b. We suppose that the handle g is turned twelve times; then, of course, the hand b, since it is on the shaft, will turn twelve times. The wheel f also turns twelve times, but e has four times the number of teeth that a has, and therefore, when f has gone round four times, e will only have gone round once: hence, when f has revolved twelve times, e will have gone round three times. d turns with e, and therefore the twelve revolutions of the handle will have turned d round three times, but since c has 75 teeth and d 25 teeth, c will have only made one revolution, while d has made three revolutions; We have already seen (Art. 681) how, by a train of wheels, one wheel can be made to revolve once in an hour. If that wheel be upon the shaft instead of the handle g, the hand b will be the minute-hand of the clock, and the hand a the hour-hand. 685. The adjustment of the numbers of teeth is important, and the choice of wheels which would answer is limited. For since the shafts are parallel, the distance between the centres of f and e must equal that between the centres of c and of d. But it is evident that the distance from the centre of f to the centre of e is equal to the sum of the radii of the wheels f and e. Hence the sum of the radii of the wheels f and e must be equal to the sum of the radii of c and d. But the circumferences of circles are proportional to their radii, and hence the sum of the circumferences of f and e must equal that of c and d; it follows that the sum of the teeth in e and f must be equal to the sum of the teeth in c and d. In the present case each of these sums is one hundred. 686. Other arrangements of wheels might have been devised, which would give the required motion; for example, if f were 20, as before, and e 240, and if c and d were each equal to 130, the sum of the teeth in each pair would be 260. e would only turn once for every twelve revolutions of f, and c and d would turn with the same velocity as e; hence the motion of the hand a would be one-twelfth that of b. This plan requires larger wheels than the train already proposed. THE STRIKING PARTS.688. When the hour-hand reaches certain points on the dial, the striking is to commence; and a certain number of strokes must be delivered. The striking apparatus has both to initiate the striking and to control the number of strokes; the latter is by far the more difficult duty. Two contrivances are in common use; we shall describe that which is used in the best clocks. 689. An essential feature of the striking mechanism in the repeating clock is the snail, which is shown at b. This piece must revolve once in twelve hours, and is, therefore, attached to an axle which performs its revolution in exactly the same time as the hour-hand of the clock. In the model, the striking gear is shown detached from the going parts, but it is easy to imagine how the snail can receive this motion. The margin of the snail is marked with twelve steps, numbered from one to twelve. The portions of the margin between each pair of steps is a part of the circumference of a circle, of which the axis of the snail is the centre. The correct figuring of the snail is of the utmost importance to the correct performance of the clock. Above the snail is a portion of a toothed wheel, f, called the rack; this contains about fourteen or fifteen teeth. When this wheel is free, it falls down until a pin comes in contact with the snail at b. Fig. 102. 691. a is a small piece called the “gathering pallet”; it is so placed with reference to the rack that, at each revolution of a, the pallet raises the rack one tooth. Thus, after the rack has fallen, the gathering pallet gradually raises it. 692. On the same axle as the gathering pallet, and turning with it, is another piece c, the object of which is to arrest the motion when the rack has been raised, sufficiently. On the rack is a projecting pin; the piece c passes free of this pin until the rack has been lifted to its original height, when c is caught by the pin, and the mechanism is stopped. The magnitude of the teeth in the rack is so arranged with reference to the snail, that the number of lifts which the pallet must make in raising the rack is equal to the number marked upon the step of the snail upon which the rack had fallen; hence the snail has the effect of controlling the number of revolutions which the gathering pallet can make. The rack is retained by a detent f, after being raised each tooth. 693. The gathering pallet is turned by a small pinion of 27 teeth, and the pinion is worked by the wheel c, of 180 teeth. This wheel carries a barrel, to which a movement of rotation is given by a weight, the arrangement of which is evident: a second pinion of 27 teeth on the same axle with d is also turned by the large wheel c. Since these pinions are equal, they revolve with equal velocities. Over d the bell i is placed; its hammer e is so arranged that a pin attached to d strikes the bell once in every revolution of d. The action will now be easily understood. When the hour-hand reaches the hour, a simple arrangement raises the detent f; the rack then drops; the moment the rack drops, the gathering pallet commences to revolve and raises up the rack; as each tooth is raised a stroke is given to the bell, and thus the bell strikes until the piece c is brought to rest against the pin. 694. The object of the fan h is to control the rapidity of the motion: when its blades are placed more or less obliquely, the velocity is lessened or increased. |