Introduction.—The General Properties of Timber.—Resistance to Extension.—Resistance to Compression.—Condition of a Beam strained by a Transverse Force. INTRODUCTION343. In the lectures on the mechanical powers which have been just completed, we have seen how great weights may be raised or other large resistances overcome. We are now to consider the important subject of the application of mechanical principles to structures. These are fixtures, while machines are adapted for motion; a roof or a bridge is a structure, but a crane or a screw-jack is a machine. Structures are employed for supporting weights, and the mechanical powers give the means of raising them. 344. A structure has to support both its own weight and also any load that is to be placed upon it. Thus a railway bridge must at all times sustain what is called the permanent load, and frequently, of course, the weight of one or more trains. The problem which the engineer solves is to design a bridge which shall be sufficiently strong, and, at the 345. In the four lectures of the course which will be devoted to this subject it will only be possible to give a slight sketch, and therefore but few details can be introduced. An extended account of the properties of different materials used in structures would be beyond our scope, but there are some general principles relating to the strength of materials which may be discussed. Timber, as a building material, has, in modern times, been replaced to a great extent by iron in large structures, but timber is more capable than iron of being experimented upon in the lecture room. The elementary laws which we shall demonstrate with reference to the strength of timber, are also, substantially the same as the corresponding laws for the strength of iron or any other material. Hence we shall commence the study of structures by two lectures on timber. The laws which we shall prove experimentally will afterwards be applied to a few simple cases of bridges and other actual structures. THE GENERAL PROPERTIES OF TIMBER.346. The uses of timber in the arts are as various as its qualities. Some woods are useful for their beauty, and others for their strength or durability under different circumstances. We shall only employ “pine” in our experimental inquiries. This wood is selected because it is so well known and so much used. A knowledge of the properties of pine would probably be more useful than a knowledge of the properties of any other wood, and at the same time it must be remembered that the laws which we shall establish by means of slips of pine may be generally applied. 347. A transverse section of a tree shows a number of rings, each of 348. When a tree is felled it contains a large quantity of sap, which must be allowed to evaporate before the wood is fit for use. With this object the timber is stored in suitable yards for two or more years according to the purposes for which it is intended; sometimes the process of seasoning, as it is called, is hastened by other means. Wood, when seasoning, contracts; hence blocks of timber are often found split from the circumference to the centre, for the outer rings, being newer and containing more sap, contract more than the inner rings. For the same reason a plank is found to warp when the wood is not thoroughly seasoned. The side of the plank which was farthest from the centre of the tree contracts more than the other side, and becomes concave. This can be easily verified by looking at the edge of the plank, for we there see the rings of which it is composed. 349. Timber may be softened by steaming. I have here a rod of pine, 24"×0"·5×0"·5, and here a second rod cut from the same piece and of the same size, which has been exposed to steam of boiling water for more than an hour: securing these at one end to a firm stand, I bend them down together, and you see that after the dry rod has broken the steamed rod can be bent much farther before it gives way. This property of wood is utilized in shaping the timbers of wooden ships. We shall be able to understand the action of steam if we reflect that wood is composed of a number of fibres ranged side by side and united together. A rope is composed of a number of fibres laid together and twisted, but the fibres are not coherent as they are in wood. Hence we 350. The structure of wood is exhibited by the following simple experiment:—Here are two pieces of pine, each 9"×1"×1". One of them I easily snap across with a blow, while my blows are unable to break the other. The difference is merely that one of these pieces is cut against the grain, while the other is with it. In the first case I have only to separate the connection between the fibres, which is quite easy. In the other case I would have to tear asunder the fibres themselves, which is vastly more difficult. To a certain extent the grained structure is also found in wrought iron, but the contrast between the strength of iron with the grain and against the grain is not so marked as it is in wood. RESISTANCE TO EXTENSION.351. It will be necessary to explain a little more definitely what is meant by the strength of timber. We may conceive a rod to be broken in three different ways. In the first place the rod may be taken by a force at each end and torn asunder by pulling, as a thread may be broken. To do this requires very great power, and the strength of the material with reference to such a mode of destroying it is called its resistance to extension. In the second place, it may be broken by longitudinal pressure at each end, as a pillar may be crushed by the superincumbent weight being too large; the strength that relates to this form of force is called resistance to compression: finally, the rod may be broken by a force applied transversely. The strength of pine with reference to these different applications of force will be Fig. 49. 352. With reference to the strength of timber in its capacity to resist extension, we can do but little in the lecture room. I have here a pine rod a b, of dimensions 48"×0".5×0"·5, Fig. 49. 354. Let us contrast the resistance of a rod of timber to extension with the effect upon a rope under the same circumstances. I have here a rope about 0".25 diameter; it is suspended from a point, and bears a 14 lb. weight in order to be completely stretched. I mark points upon the rope 2' apart. I now change the stone weight for a weight of 1 cwt., and on measurement I find that the two points which before were 2' 355. We have already explained in Art. 37 the meaning of the word “tie.” The material suitable for a tie should be capable of offering great resistance, not only to actual rupture by tension, but even to appreciable elongation. These qualities we have found to be possessed by wood. They are, however, possessed in a much higher degree by wrought iron, which possesses other advantages in durability and facility of attachment. RESISTANCE TO COMPRESSION.356. We proceed to examine into the capability of timber to resist forces of longitudinal compression, either as a pillar or in any other form of “strut,” such for instance, as the jib of the crane represented in Fig. 17. The use of timber as a strut depends in a great degree upon the coherence of the fibres to each other, as well as upon their actual rigidity. The action of timber in resisting forces of compression is thus very different from its action when resisting forces of extension; we can examine, by actual experiment, the strength of timber under the former conditions, as the weights which it will be necessary to employ are within the capabilities of our lecture room apparatus. 357. The apparatus is shown in Fig. 50. It consists of a lever of the second order, 10' long, the mechanical advantage of which is threefold; the resistance of the pillar d e to crushing is the load to be overcome, and the power consists of weights, to receive which the tray b is used; every pound placed in the tray produces a compressive force of 3 lbs. on the pillar at d. The fulcrum is at a and guides at g. Fig. 50. 359. Let us next try the resistance of a shorter rod of the same section. I place a piece of pine 20" long and 0"·5 square in the apparatus, firmly securing each end as in the former case. The lower bracket is adjusted so as to make the lever horizontal; the counterpoise, of course, remains the same, and weights are placed in the tray as before. No deflection is noticed when the rod supports 126 360. Hence the breaking load of a rod 20" long is more than double the breaking load of a rod of 40" long the same section; from this we learn that the sections being equal, short pillars are stronger than long pillars. It has been ascertained by experiment that the strength of a square pillar to resist compression is proportional to the square of its sectional area. Hence a rod of pine, 40" long and 1" square, having four times the section of the rod of the same length we have experimented on, would be sixteen times as strong, and consequently its breaking weight would amount to nearly a ton. The strength of a rod used as a tie depends only on its section, while the strength of a rod used as a strut depends on its length as well as on its section. CONDITION OF A BEAM STRAINED BY A TRANSVERSE FORCE. 361. We next come to the important practical subject of the strength of timber when supporting a transverse strain; that is, when used as a beam. The nature of a transverse strain may be understood from Fig. 51, which represents a small beam, strained by a load at its centre. Fig. 52 shows two supports 40" apart, across which a rod of pine 48"×1"×1" is laid; at the middle of this rod a hook is placed, from which a tray for the reception of weights is suspended. A rod thus Fig. 51. For convenience in recording the experiments the tray chain and hooks have been adjusted to weigh exactly 14 lbs. (Fig. 52). a b is a cord which is kept stretched by the little weights d: this cord gives a rough measure of the deflection of the beam from its horizontal position when strained by a load in the tray. In order to Fig. 52. 363. While I look through the telescope my assistant suspends the tray from the beam. Instantly I see the cross descend in the field of view. I lower the telescope until the spider’s web again passes through the image of the intersection of the lines, and then by looking at the scale I see that the telescope has been moved down 0"·19, that is, about one-fifth of an inch: this is, therefore, the distance by which the cross lines on the beam, and therefore the centre of the beam itself, must have descended. Indeed, even a simpler apparatus would be competent to measure the amount of deflection with some degree of precision. By placing successively one stone after another upon the tray, the beam is seen to deflect more and more, until even without the telescope you see the beam has deviated from the horizontal. 364. By carefully observing with the telescope, and measuring in the way already described, the deflections shown in Table XXIII. were determined. The scale along the vertical pillar was read after the spider’s web had been adjusted for each increase in the weight. The movement from the original position is recorded as the deflection for each load. A rod of pine 48"×1"×1"; resting freely on supports 40" apart; and laden in the middle.
365. The first column records the number of the experiment. The second represents the load, and the third contains the corresponding deflections. It will be seen that up to 98 lbs. the deflection is about 0"·2 for every stone weight, but afterwards the deflection increases more rapidly. When the weight reaches 140 lbs. the deflection at first indicated is 2"·37; but gradually the cross lines are seen to descend in the field of the telescope, showing that the beam is yielding and finally it breaks across. This experiment teaches us that a beam is at first deflected by an amount proportional to the weight it supports; but that when two-thirds of the breaking weight is reached, the beam is deflected more rapidly. 369. We next consider the condition of the fibres of a beam when strained by a transverse force. It is evident that since the fracture commences at the lower surface of the beam, the fibres there must be in a state of tension, while those at the concave upper surface of the beam are compressed together. This condition of the fibres may be proved by the following experiment. 370. I take two pine rods, each 48"×1"×1", perfectly similar in all respects, cut from the same piece of timber, and therefore probably of very nearly identical strength. With a fine tenon saw I cut each of the rods half through at its middle point. I now place one of these beams on the supports 40" apart, with the cut side of the beam upwards. I suspend from it the tray, which I gradually load with weights until the beam breaks, which it does when the total weight is 81 lbs. If I were to place the second beam on the same supports with the cut 371. What is the cause of this difference? The fibres being compressed together on the upper surface, a cut has no tendency to open there; and if the cut could be made with an extremely fine saw, so as to remove but little material, the beam would be substantially the same as if it had not been tampered with. On the other hand, the fibres at the lower surface are in a state of tension; therefore when the cut is below it yawns open, and the beam is greatly weakened. It is, in fact, no stronger than a beam of 48"×0"·5×1", placed with its shortest dimension vertical. If we remember that an entire beam of the same size required about 140 lbs. to break it (Art. 366), we see that the strength of a beam is reduced to one-fourth by being cut half-way through and having the cut underneath. 372. We may learn from this the practical consequence that the sounder side of a beam should always be placed downwards. Any flaw on the lower surface will seriously weaken the beam: so that the most knotty face of the wood should certainly be placed uppermost. If a portion of the actual substance of a beam be removed—for example, if a notch be cut out of it—this will be almost equally injurious on either side of the beam. 373. We may illustrate the condition of the upper surface of the beam by a further experiment. I make two cuts 0"·5 deep in the middle of a pine rod 48"×1"×1". These cuts are 0"·5 apart, and slightly inclined; the piece between them being removed, a wedge is shaped to fit tightly into the space; the wedge is long enough to project a 374. The collapse of a beam by a transverse strain commences by fracture of the fibres on the lower surface, followed by a rupture of all fibres up to a considerable depth. Here we see that by a transverse force the fibres in a beam of 48"×1"×1" have been broken by a strain of 140 lbs. (Art. 366); but we have already stated (Art. 353) that to tear such a rod across by a direct pull at each end a force of about four tons is necessary. The breaking strain of the fibres must be a certain definite quantity, yet we find that to overcome it in one way four tons is necessary, while by another mode of applying the strain 140 lbs. is sufficient. 375. To explain this discrepancy we may refer to the experiment of Art. 28, wherein a piece of string was broken by the transverse pull of a piece of thread in illustration of the fact that one force may be resolved into two others, each of them very much greater than itself. A similar resolution of force occurs in the transverse deflection of the beam, and the force of 140 lbs. is changed into two other forces, each of them enormously greater and sufficiently strong to rupture the |