URANUS AND NEPTUNE Hitherto we have been dealing with bodies which, from time immemorial, have been known to man as planets. There must have been a period when one by one the various members of our system known to the ancients were discriminated from the fixed stars by unknown but patient and skilful observers; but, from the dawn of historical astronomy, up to the night of March 13, 1781, there had been no addition to the number of those five primary planets the story of whose discovery is lost in the mists of antiquity. It may be questioned whether any one man, Kepler and Newton being possible exceptions, has ever done so much for the science of astronomy as was accomplished by Sir William Herschel. Certainly no single observer has ever done so much, or, which is almost more important than the actual amount of his achievement, has so completely revolutionized methods and ideas in observing. A Hanoverian by birth, and a member of the band of the Hanoverian Guards, Herschel, after He had for several years employed his spare time in assiduous observation; and, finding that opticians' prices were higher than he could well afford, had begun to make Newtonian reflectors for himself, and had finally succeeded in constructing one of 6½ inches aperture, and of high optical quality. With this instrument, on the night of March 13, 1781, he was engaged in the execution of a plan which he had formed of searching the heavens for double stars, with a view to measuring their distance from the earth by seeing whether the apparent distance of the members of the double from one another varied in any degree in the course of the earth's journey round the sun. He was working through the stars in the constellation Gemini, when In a good telescope a fixed star shows only a very small disc, which indeed should be but a point of light; and the finer the instrument the smaller the disc. The disc of this object, however, was unmistakably larger than those of the fixed stars in its neighbourhood—unmistakably, that is, to an observer of such skill as Herschel, though those who have seen Uranus under ordinary powers will find their respect considerably increased for the skill which at once discriminated the tiny greenish disc from that of a fixed star. Subsequent observation revealed to Herschel that he was right in supposing that this body was not a star, for it proved to be in motion relatively to the stars among which it was seen. But, in spite of poetic authority, astronomical discoveries do not happen quite so dramatically as the sonnet 'On First looking into Chapman's Homer' suggests. 'Then felt I like some watcher of the skies, When a new planet swims into his ken' is a noble simile, were it only true to the facts. But new planets do not swim around promiscuously in this fashion; and in the case of Uranus, which more nearly realizes the thought of Keats than any other in the history of astronomy, the 'watcher of the skies' felt probably more puzzlement than anything else. Herschel was far from realizing that he It quickly became evident, however, that the new discovery moved in no cometary orbit, but in one which marked it out as a regular member of the solar system. A search was then instituted for earlier observations of the planet, and it was found to have been observed and mistaken for a fixed star on twenty previous occasions! One astronomer, Lemonnier, had actually observed it no fewer than twelve times, several of them within a few weeks of one another, and, had he but reduced and compared his observations, could scarcely have failed to have anticipated Herschel's discovery. But perhaps an astronomer who, like Lemonnier, noted some of his observations on a paper-bag which had formerly contained hair-powder, and whose astronomical papers have been described as 'the image of Chaos,' scarcely deserved the honour of such a discovery! When it became known that this new addition to our knowledge of the solar system had been made by the self-taught astronomer at Bath, Herschel was summoned to Court by George III., and enabled to devote himself entirely to his favourite study by the Uranus revolves round the sun at a distance from him of about 1,780,000,000 miles, in an orbit which takes eighty-four of our years to complete. Barnard gives his diameter at 34,900 miles, and if this measure be correct, he is the third largest planet of the system. Other measures give a somewhat smaller diameter, and place Neptune above him in point of size. Subsequent observers have been able to see but little more than Herschel saw upon the diminutive disc to which even so large a body is reduced at so vast a distance. When near opposition, Uranus can readily be seen with the naked eye as a star of about the sixth magnitude, and there is no difficulty The spectrum of Uranus is marked by peculiarities which distinguish it from that of the other planets. It is crossed by six dark absorption-bands, which indicate at all events that the medium through which the sunlight which it reflects to us has passed is of a constitution markedly different from that of our own atmosphere. It was at first thought that the spectrum gave evidence of the planet's self-luminosity; but this has not proved to be the case, though doubtless Uranus, like Jupiter and Saturn, is in the condition of a semi-sun. Like the other members of the group of large exterior planets, his density is small, being only ? greater than that of water. Six years after his great discovery, Herschel, with In a few years after the discovery of Uranus, it became apparent that by no possible ingenuity could his places as determined by present observation be satisfactorily combined with those determined by the twenty observations available, as already mentioned, from the period before he was recognised as a planet. Either the old observations were bad, or else the Bouvard himself appears to have believed in the existence of a planet exterior to Uranus whose attraction was producing these disturbances, but he died in 1843 before any progress had been made with the solution of the enigma. In 1834 Hussey approached Airy, the Astronomer Royal, with the suggestion that he might sweep for the supposed exterior planet if some mathematician would help him as to the most likely region to investigate. Airy, however, returned a sufficiently discouraging answer, and Hussey apparently was deterred by it from carrying out a search which might very possibly have been rewarded by success. Bessel, the great German mathematician, had marked the problem for his own, and would doubtless have succeeded in solving it, but shortly after he had begun the gathering of material for his researches, he was seized with the illness which ultimately proved fatal to him. The question was thus practically untouched when in 1841, John Couch Adams, then an undergraduate of St. John's College, Cambridge, jotted down a memorandum in which he indicated his resolve to attack it and attempt the discovery of the perturbing planet, 'as soon as possible after taking my degree.' The half-sheet of notepaper on which the memorandum was made is still extant, and forms part of the volume of manuscripts on the subject preserved in the library of St. John's College. On October 21, 1845, Adams, who had taken his degree (Senior Wrangler) in 1843, communicated to Airy the results of his sixth and final attempt at the solution of the problem, and furnished him with the elements and mass of the perturbing planet, and an indication of its approximate place in the heavens. Airy, whose record in the matter reads very strangely, was little more inclined to give encouragement to Adams than to Hussey. He replied by propounding to the young investigator a question which he considered 'a question of vast importance, an experimentum crucis,' which Adams seemingly considered of so little moment, that strangely enough he never troubled to answer it. Then the matter dropped out of sight, though, had the planet been sought for when Adams's results were first communicated to the Astronomer Royal, it would have been found within 3½ lunar diameters of the place assigned to it. Meanwhile, in France, another and better-known mathematician had taken up the subject, and in Indeed, a certain fatality seems to have hung over the attempts made in Britain to realize Adams's discovery. In 1845, the Rev. W. R. Dawes, one of the keenest and most skilful of amateur observers, was so much impressed by some of Adams's letters A very different fate had attended Leverrier's calculations. On September 23, 1846, a letter from Leverrier was received at the Berlin Observatory, asking that search should be made for the planet in the position which his inquiries had pointed out. The same night Galle made the search, and within a degree of the spot indicated an object was found with a measurable disc of between two and three seconds diameter. As it was not laid down on Bremiker's star-chart of the region, it was clearly not a star, and by next night its planetary nature was made manifest. The promptitude with which Leverrier's results were acted upon by Encke and Galle is in strong contrast to the sluggishness which characterized the British official astronomers, who, indeed, can scarcely be said to have come out of the business with much credit. A somewhat undignified controversy ensued. The French astronomers, very naturally, were eager to claim all the laurels for their brilliant countryman, and were indignant when a claim was put in on behalf of a young Englishman whose Galle suggested that the new planet should be called Janus; but the name of the two-faced god was felt to be rather too pointedly suitable at the moment, and that of Neptune was finally preferred. Neptune is about 32,900 miles in diameter, his distance from the sun is 2,792,000,000 miles, and he occupies 165 years in the circuit of his gigantic orbit. The spectroscopic evidence, such as it is, seems to point to a condition somewhat similar to that of Uranus. Neptune had only been discovered seventeen days when Lassell found him to be attended by one satellite. First seen on October 10, 1846, it was not till the following July that the existence of this body was verified by Lassell himself and also by Otto Struve and Bond of Harvard. From the fact that it is visible at such an enormous distance, it is evident that this satellite must be Small instruments can make nothing of Neptune beyond, perhaps, distinguishing the fact that, whatever the tiny disc may be, it is not that of a star. His satellite is an object reserved for the very finest instruments alone. Should Neptune have any inhabitants, their sky must be somewhat barren of planets. Jupiter's greatest elongation from the sun would be about 10°, and he would be seen under somewhat less favourable conditions than those under which we see Mercury; while the planets between Jupiter and the sun would be perpetually invisible. Saturn and Uranus, however, would be fairly conspicuous, the latter being better seen than from the earth. Suspicions have been entertained of the existence of another planet beyond Neptune, and photographic searches have been made, but hitherto without success. So far as our present knowledge goes, Neptune is the utmost sentinel of the regular army of the solar system. |