The odors occurring in plants have their seat mostly in peculiar receptacles called oil glands in which the aromatic substances are stored and seem to take no further part in the vital processes of the plant. As has been intimated, the parts of the plant in which the aromatic substances are stored differ greatly; but in general it may be said that in most cases the flowers and fruits contain the odors; more rarely they may be found in the roots, in the bark, or in the wood, and in very few instances equally distributed throughout the whole plant. In some cases, however, we can obtain totally different odors from various parts of the same plant; this applies, for instance, to the orange-tree, whose blossoms furnish a different odor from the ripe fruits, and the latter must be distinguished from that obtainable from the leaves. The odorous substances occurring in the vegetable kingdom are either mobile liquids (essential oils), or they have a thicker consistence ranging from that of cream to that of soft cheese (balsams or gum-resins), or they are solid (resins). Aside from the fact that the term “essential oils” is quite incorrect, since the substances called by that name have nothing in common with oils except perhaps the liquid state, we are forced from a chemi As the localities where the raw materials—that is, the aromatic plants—are cultivated on a large scale naturally constitute the places of manufacture of essential oils, we find in southern France and in England the most extensive factories devoted exclusively to the preparation of perfumes. In the countries named, a favorable influence is exerted, too, by their situation near the sea, as well as by their trade with tropical lands from which additional aromatic plants are imported. We have stated above that the manufacture of essential oils forms almost a monopoly in France and England; but there is no doubt that this country (the United States) like An exact knowledge of the chemical properties of a substance is in all cases the first and fundamental condition for its preparation; it would appear necessary, therefore, that we should endeavor to gain complete information about the nature of vegetable aromatic substances before we enter upon the description of the various methods of their preparation. The Chemical Constitution of Vegetable Aromatic Substances.The sources of the odors derived from the vegetable kingdom can be divided, as stated above, into so-called essential oils, balsams, gum-resins or soft resins, and hard resins. Since the latter bear a certain relation to the essential oils from which they are formed through chemical combinations, we must consider them first. The flowers, the fruits and their rinds, or even the wood of some plants form the receptacles of essential oils; if they are liquid they are called essential oils par excellence; if they are firm they are called camphors. Besides, there are intermediate states between them: oil of rose is always viscid and solidifies even at temperatures considerably above the freezing-point of water (see under Oil of Rose). The bodies which are generally called essential oils are usually mixtures of a hydrocarbon with an oxygenated body, or an unchanged oil with another which has become altered by the influence of the oxygen of the air—a condition to 1. Non-oxygenated essential oils. 2. Oxygenated essential oils. The non-oxgenated essential oils consist only of two elements—carbon and hydrogen; the other group, as the name indicates, contains a third element in chemical combination, and consist of carbon, hydrogen, and oxygen. Most of the essential oils of the first group have the same chemical composition: C10H16 (10 atoms of carbon combined with 16 atoms of hydrogen). Despite the like chemical composition, all the essential oils display different physical qualities; they vary in density, in refractive power, in boiling-point (often by many degrees), and, a matter of the greatest importance for our purposes, in their odor. We may state at once that but few essential oils can be said to have a pleasant odor; that of most of them is even disagreeable and narcotic to the olfactory nerves; it is only after the oil has been extremely diluted that the odor begins to become pleasant and to resemble that of the plant from which the oil was derived. According to their physical qualities, essential oils may be described as fluids of a specific narcotic odor, colorless but very refractive, and easily inflammable. Only a few essential oils can be produced in such a state of purity as to appear perfectly colorless; usually they are more or less dark yellow in color, and some even possess a characteristic tint; thus oil of acacia is reddish-brown, oils of rose and absinth are green, oil of chamomile is blue. But a simple experiment will show that the color is not inseparably connected with the oil, for certain tinted oils can be obtained perfectly colorless by being distilled with another, less volatile oil which retains the coloring matter. The boiling-point of essential oils is in general very high A peculiar property of essential oils, which is of great importance in their preparation, is that of distilling over in large quantities with steam—both ordinary and superheated—that is, at temperatures at most only slightly exceeding 100° C. or 212° F. For this reason essential oils are usually obtained in this way, since they are but slightly soluble in water. Still, most of the oils dissolve in water in sufficient amount to impart to it their characteristic odor and thus to render it often very fragrant. Aqua NaphÆ triplex (orange-flower water), rose water, etc., are such as have been distilled over with the essential oils, contain a small quantity of the latter in solution, and hence have a very agreeable odor. All essential oils dissolve readily in strong alcohol, petroleum ether, benzol, bisulphide of carbon, in liquid and solid fats, in glycerin, etc.; we shall again recur to this important subject under the head of the preparation of the essential oils. If a freshly prepared essential oil is at once excluded from the air by being placed in hermetically sealed vessels which it completely fills, and is kept from the light, the oil will remain unchanged for any length of time. But if an essential oil is exposed to the air, a peculiar, chemical alteration begins, which proceeds more rapidly and obviously if direct light acts upon the oil at the same time. The odor becomes less intense, the oil grows darker in color and more viscous, and also acquires a peculiar quality: it has a strong bleaching effect which is easily seen on the cork closing the bottle, which is beautifully bleached. After a certain time the oil changes to a viscid, less odorous mass, into balsam, and the latter, after These remarkable physical and chemical alterations depend on the fact that the essential oil absorbs oxygen from the air, which it puts into a peculiar condition in which it exerts increased chemical activity and is termed ozonized oxygen. One of the most marked of these effects is the uncommonly strong bleaching power of ozonized or active oxygen. When an essential oil that has altered so far as to contain ozonized oxygen—which is shown by its bleaching vegetable coloring matters such as the juice of cherries, red beets, tincture of litmus, etc., agitated with it—is cooled, we notice the separation from it of a usually crystalline, colorless, and odorless body called stearopten, while the remaining liquid part is called elÆopten. Stearopten always contains oxygen, while elÆopten still consists only of carbon and hydrogen. In the formation of the stearopten we distinctly see the beginning process of resinification, which, therefore, is nothing but an oxidation (combination of the essential oil with oxygen). It should, however, be stated that as to many essential oils this is not proven by actual observation. Many of them are not known to us as naturally existing without any stearopten. Balsams are essential oils which have to a great extent changed into resin, which they contain in solution, and thereby have become more or less viscid. If the process of oxidation goes still farther, eventually the greater portion of the essential oil becomes oxidized, the entire mass grows firm, and then possesses only a very faint odor which is due to the last remnants of the unchanged essential oil. Since aromatic substances during evaporation become mixed with air, it appears probable that they act upon the olfactory nerves only at the moment when they become oxidized. The entire process of resinification of oil of turpentine can be followed very clearly on the pitch pine (Pinus austriaca, or The above-mentioned qualities of the essential oils indicate naturally how those used in perfumery, which are often very costly, are to be preserved. For this purpose small strong bottles should be chosen which are closed with well-fitting glass stoppers, over which is applied a glass capsule ground to fit tightly over the neck of the bottle. These bottles should always be completely filled (hence small bottles should be selected), and kept tightly closed, in the dark. As the action of oxygen is retarded by low temperatures, it is advisable to keep bottles containing essential oils in a cool cellar. But care must be had never to pour out an essential oil in the cellar near an open candle light. The vapors are very apt to take fire, as they are quite inflammable. As there are a great many aromatic vegetable substances, so there are numerous odors, or, to retain the customary though incorrect appellation, numerous essential oils. All of these, however, cannot be used in the art of perfumery, as some of them do not possess a pleasant odor, as is the case, for instance, with oil of turpentine. (We may state here, however, that very pure oil of turpentine, distilled from certain ConiferÆ, has an agreeable, refreshing odor which at present has found application in perfumery under the title of forest perfume or pine-needle essence.) Besides, there are As we shall return to this subject in connection with the essential oils which are used in perfumery in general, we will now consider at greater length the aromatic vegetable substances which are employed for the manufacture of fragrant odors. |