RADIATION Ionizing Radiation

Previous

Our modern technological civilization exposes mankind to two general types of genetic dangers unknown earlier: Synthetic chemicals (or unprecedentedly high concentrations of natural ones) absent in earlier eras, and intensities of energetic radiation equally unknown or unprecedented.

Chemicals can interfere with the process of replication by offering alternate pathways with which the cellular machinery is not prepared to cope. In general, however, it is only those cells in direct contact with the chemicals that are so affected, such as the skin, the intestinal linings, the lungs, and the liver (which is active in altering and getting rid of foreign chemicals). These may undergo somatic mutations, and an increased incidence of cancer in those tissues is among the drastic results of exposure to certain chemicals.

Such chemicals are not, however, likely to come in contact with the gonads where the sex cells are produced. While individual persons may be threatened by the manner in which the environment is being permeated with novel chemicals, the next generation is not affected in advance.

Radiation is another matter. In its broadest sense, radiation is any phenomenon spreading out from some source in all directions. Physically, such radiation may consist of waves or of particles.[3] Of the wave forms the two best-known are sound and electromagnetic radiations.

Sound carries very low concentrations of energy. This energy is absorbed by living tissue and converted into heat. Heat in itself can increase the mutation rate but the effect is a small one. The body has effective machinery for keeping its temperature constant and the gonads are not likely to suffer unduly from exposure to heat.

Electromagnetic radiation comes in a wide range of energies, with visible light (the best-known example of such radiation because we can detect it directly and with great sensitivity) about in the middle of the range. Electromagnetic radiations less energetic than light (such as infrared waves and microwaves) are converted into heat when absorbed by living tissue. The heat thus formed is sufficient to cause atoms and molecules to vibrate more rapidly, but this added vibration is not usually sufficient to pull molecules apart and therefore does not bring about chemical changes.

Light will bring about some chemical changes. It is energetic enough to cause a mixture of hydrogen and chlorine to explode. It will break up silver compounds and produce tiny black grains of metallic silver (the chemical basis of photography). Living tissue, however, is largely unaffected—the retina of the eye being one obvious exception.

Ultraviolet light, which is more energetic than visible light, correspondingly can bring about chemical changes more easily. It will redden the skin, stimulate the production of pigment, and break up certain steroid molecules to form vitamin D. It will even interfere with replication to some extent. At least there is evidence that persistent exposure to sunlight brings about a heightened tendency to skin cancer. Ultraviolet light is not very penetrating, however, and its effects are confined to the skin.

Electromagnetic radiations more energetic than ultraviolet light, such as X rays and gamma rays, carry sufficient concentrations of energy to bring about changes not only in molecules but in the very structure of the atoms making up those molecules.

Atoms consist of particles (electrons), each carrying a negative electric charge and circling a tiny centrally located nucleus, which carries a positive electric charge.

Ordinarily, the negative charges of the electrons just balance the positive charge on the nucleus so that atoms and molecules tend to be electrically neutral. An X ray or gamma ray, crashing into an atom, will, however, jar electrons loose. What is left of the atom will carry a positive electric charge with the charge size proportional to the number of electrons lost.

An atom fragment carrying an electric charge is called an ion. X rays and gamma rays are therefore examples of ionizing radiation.

Radiations may consist of flying particles, too, and if these carry sufficient energy they are also ionizing in character. Examples are cosmic rays, alpha rays, and beta rays. Cosmic rays are streams of positively charged nuclei, predominantly those of the element hydrogen. Alpha rays are streams of positively charged helium nuclei. Beta rays are streams of negatively charged electrons. The individual particles contained in these rays may be referred to as cosmic particles, alpha particles, and beta particles, respectively.

Cosmic ray and trapped Van Allen Belt energetic particles produced the dark tracks in this photo of a nuclear emulsion that had been carried aloft on an Air Force satellite. The energetic particles cause ionization of the silver bromide molecules in the emulsion.

Alpha particles emitted by the source at right leave tracks in a cloud chamber. Some tracks are bent near the end as a result of collisions with atomic nuclei. Such collisions are more likely at the end of a track when the alpha particle has been slowed down.

Beta particles originating at left leave these tracks in a cloud chamber. Note that the tracks are much farther apart than those of alpha particles. As the particle slows down, its path becomes more erratic and the ions are formed closer together. At the very end of an electron track the proximity of the ions approximates that in an alpha-particle track.

Ionizing radiation is capable of imparting so much energy to molecules as to cause them to vibrate themselves apart, producing not only ions but also high-energy uncharged molecular fragments called free radicals.

The direct effect of ionizing radiation on chromosomes can be serious. Enough chemical bonds may be disrupted so that a chromosome struck by a high-energy wave or particle may break into fragments. Even if the chromosome manages to remain intact, an individual gene along its length may be badly damaged and a mutation may be produced.

Effects of ionizing radiation on chromosomes: Left, a normal plant cell showing chromosomes divided into two groups; right, the same type of cell after X-ray exposure, showing broken fragments and bridges between groups, typical abnormalities induced by radiation.

If only direct hits mattered, radiation effects would be less dangerous than they are, since such direct hits are comparatively few. However, near-misses may also be deadly. A streaking bit of radiation may strike a water molecule near a gene and may break up the molecule to form a free radical. The free radical will be sufficiently energetic to bring about a chemical reaction with almost any molecule it strikes. If it happens to strike the neighboring gene before it has disposed of that energy, it will produce the mutation as surely as the original radiation might have.

Furthermore, ionizing radiations (particularly of the electromagnetic variety) tend to be penetrating, so that the interior of the body is as exposed as is the surface. The gonads cannot hide from X rays, gamma rays, or cosmic particles.

All these radiations can bring about somatic mutations—all can cause cancer, for instance.

What is worse, all of them increase the rate of genetic mutations so that their presence threatens generations unborn as well as the individuals actually exposed.

Background Radiation

Ionizing radiation in low intensities is part of our natural environment. Such natural radiation is referred to as background radiation. Part of it arises from certain constituents of the soil. Atoms of the heavy metals, uranium and thorium, are constantly, though very slowly, breaking down and in the process giving off alpha rays, beta rays, and gamma rays. These elements, while not among the most common, are very widely spread; minerals containing small quantities of uranium and thorium are to be found nearly everywhere.

In addition, all the earth is bombarded with cosmic rays from outer space and with streams of high-energy particles from the sun.

Various units can be used to measure the intensity of this background radiation. The roentgen, abbreviated r, and named in honor of the discoverer of X rays, Wilhelm Roentgen, is a unit based on the number of ions produced by radiation. Rather more convenient is another unit that has come more recently into prominence. This is the rad (an abbreviation for “radiation absorbed dose”) that is a measure of the amount of energy delivered to the body upon the absorption of a particular dose of ionizing radiation. One rad is very nearly equal to one roentgen.

Since background radiation is undoubtedly one of the factors in producing spontaneous mutations, it is of interest to try to determine how much radiation a man or woman will have absorbed from the time he is first conceived to the time he conceives his own children. The average length of time between generations is taken to be about 30 years, so we can best express absorption of background radiation in units of rads per 30 years.

Natural radioactivity in the atmosphere is shown by this nuclear-emulsion photograph of alpha-particle tracks (enlarged 2000 diameters) emitted by a grain of radioactive dust.

The intensity of background radiation varies from place to place on the earth for several reasons. Cosmic rays are deflected somewhat toward the magnetic poles by the earth’s magnetic field. They are also absorbed by the atmosphere to some extent. For this reason, people living in equatorial regions are less exposed to cosmic rays than those in polar regions; and those in the plains, with a greater thickness of atmosphere above them, are less exposed than those on high plateaus.

Then, too, radioactive minerals may be spread widely, but they are not spread evenly. Where they are concentrated to a greater extent than usual, background radiation is abnormally high.

Thus, an inhabitant of Harrisburg, Pennsylvania, may absorb 2.64 rads per 30 years, while one of Denver, Colorado, a mile high at the foot of the Rockies, may absorb 5.04 rads per 30 years. Greater extremes are encountered at such places as Kerala, India, where nearby soil, rich in thorium minerals, so increases the intensity of background radiation that as much as 84 rads may be absorbed in 30 years.

In addition to high-energy radiation from the outside, there are sources within the body itself. Some of the potassium and carbon atoms of our body are inevitably radioactive. As much as 0.5 rad per 30 years arises from this source.

Rads and roentgens are not completely satisfactory units in estimating the biological effects of radiation. Some types of radiation—those made up of comparatively large particles, for instance—are more effective in producing ions and bring about molecular changes with greater ease than do electromagnetic radiations delivering equal energy to the body. Thus if 1 rad of alpha particles is absorbed by the body, 10 to 20 times as much biological effect is produced as there would be in the absorption of 1 rad of X rays, gamma rays, or beta particles.

Sometimes, then, one speaks of the relative biological effectiveness (RBE) of radiation, or the roentgen equivalent, man (rem). A rad of X rays, gamma rays, or beta particles has a rem of 1, while a rad of alpha particles has a rem of 10 to 20.

If we allow for the effect of the larger particles (which are not very common under ordinary conditions) we can estimate that the gonads of the average human being receive a total dose of natural radiation of about 3 rems per 30 years. This is just about an irreducible minimum.

Man-made Radiation

Man began to add to the background radiation in the 1890s. In 1895, X rays were discovered and since then have become increasingly useful in medical diagnosis and therapy and in industry. In 1896, radioactivity was discovered and radioactive substances were concentrated in laboratories in order that they might be studied. In 1934, it was found that radioactive forms of nonradioactive elements (radioisotopes) could be formed and their use came to be widespread in universities, hospitals, and industries.[4]

Then, in 1945, the nuclear bomb was developed. With the uranium or plutonium fission that produces a nuclear explosion, there is an accompaniment of intense gamma radiation. In addition, a variety of radioisotopes are left behind in the form of the residue (fission fragments) of the fissioning atoms. These fission fragments are distributed widely in the atmosphere. Some rise high into the stratosphere and descend (as fallout) over the succeeding months and years.[5]

It is hard to try to estimate how much additional radiation is being absorbed by human beings out of these man-made sources. Fallout is not uniformly spread over the earth but is higher in those latitudes where nuclear bombs have been most frequently tested. Then, too, people in industries and research who are involved with the use of radioisotopes, and people in medical centers who constantly deal with X rays, are likely to get more exposure than others.

These adjuncts of modern science and medicine are more common and widespread in technologically advanced countries than elsewhere, and nuclear bombs have most often been exploded in just those latitudes where the advanced countries are to be found.

Attempts have been made to work out estimates of this exposure. One estimate, involving a number of technologically advanced countries (including the United States) showed that an average of somewhere between 0.02 and 0.18 rem per year was absorbed, as a result of radiations (usually X rays) used in medical diagnosis and therapy. Occupational exposure added, on the average, not more than 0.003 rem, though the individuals constantly exposed in the course of their work would naturally absorb considerably more than this overall average.

Man-made radioactivity in the atmosphere produced this nuclear-emulsion photograph. This radiation source is a fission product produced in a nuclear explosion. The enlargement is 1200 diameters. Compare this with the natural radioactivity depicted on page 28.

On the whole, the highest absorption was found, as was to be expected, in the United States.

If these findings are expanded to cover a 30-year period, assuming the absorption will remain the same from year to year, it turns out that the average absorption of man-made radiation in the nations studied varies from 0.6 rem to 5.5 rems per 30 years per individual.

Considering the higher figure to be applicable to the United States, it would seem that man-made radiation from all sources is now being absorbed at nearly twice the rate that natural radiation is. To put it another way, Americans are just about tripling their radiation dosage by reason of the human activities that are now adding man-made radiation to the natural supply. By far the major part of this additional dosage is the result of the use of X rays in searching for decayed teeth, broken bones, lung lesions, swallowed objects, and so on.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page