CHAPTER IV ASTRONOMICAL FOUNDATION OF TIME

Previous

Astronomical motions on which our time is founded. — Reasons for selecting the sidereal day as a basis for our 24-hour day. — Year of the seasons shorter than the zodiacal year. — Precession of the equinoxes. — Earth's rotation most uniform motion known to us. — Time Stars and Transits. — Local time. — The date line. — Standard time. — Beginning and ending of a day. — Proposed universal time. — Clock dial for universal time and its application to business. — Next great improvement in clocks and watches indicated. — Automatic recording of the earth's rotation. — Year of the seasons as a unit for astronomers. — General conclusions.

The mystery of time encloses all things in its folds, and our grasp of its infinite bearings is measured by our limitations. As there are no isolated facts in the Universe, we can never get to the end of our subject; so we know only what we have capacity to absorb. In considering the foundation on which all our time measuring is based, we are led into the fringe of that Elysian field of science—astronomy. A science more poetical than poetry—more charming than the optimistic phantasies of youth. That science which leaves our imagination helpless; for its facts are more wonderful than our extremest mental flights. The science of vastness and interminable distances which our puny figures fail to express. “The stars sang together for joy,” might almost be placed in the category of facts; while the music of the spheres may now be considered a mathematical reality. Our time keeping is inevitably associated with these motions, and we must select one which has periods not too long. That is, no continuous motion could be used, unless it passed some species of milestones which we could observe. Consequently, our clocks do not—in the strict sense—measure time; but are adjusted to divide periods which they do not determine. We are constantly correcting their errors and never entirely succeed in getting them to run accurately to periods of time which exist entirely outside of such little things as men and clocks. So a clock is better as it approximates or bears a regular relation to some motion in nature. The sidereal clock of the astronomer does run to a regular motion; but our 24-hour clocks do not, as we shall see later. Now consider the year, or the sun's apparent motion in the Zodiac, from any given star around to the same one again. This is altogether too long to be divided by clocks, as we cannot make a clock which could be depended on for anywhere near a year. The next shorter period is that of a “moon.” This is also a little too long, is not easily observed, and requires all sorts of corrections. Observations of the moon at sea are so difficult and subject to error that mariners use them only as a last resort. If a little freedom of language is permissible, I would say that the moon has a bad character all around, largely on account of her long association with superstition, false theology and heathen feasts. She has not purged herself even to this day! The ancients were probably right when they called erratic and ill-balanced persons “luny.” Now we come to the day and find that it is about the right practical length—but what kind of a day? As there are five kinds we ought to be able to select one good enough. They are:—

  • 1st. The solar day, or noon to noon by the sun.
  • 2nd. An imaginary sun moving uniformly in the ecliptic.
  • 3rd. A second imaginary sun moving uniformly parallel to the equator at all seasons of the year.
  • 4th. One absolute rotation of the earth.
  • 5th. One rotation of the earth measured from the node, or point, of the spring equinox.

The difference between 1st and 2nd is that part of the sun's error due to the elliptical orbit of the earth.

The other part of the sun's error—and the larger—between 2nd and 3rd is that due to the obliquity of the ecliptic to the equator.

The whole error between 1st and 3rd is the “equation of time” as shown for even minutes in the first chapter under the heading, “Sun on Noon Mark 1909.”

Stated simply, for our present purpose, 1st is sundial time, and 3rd our 24-hour clock time.

This 2nd day is therefore a refinement of the astronomers to separate the two principal causes of the sun's error, and I think we ought to handle it cautiously, or my friend, Professor Todd, might rap us over the knuckles for being presumptuous.

This 5th day is the sidereal day of the astronomers and is the basis of our time, so it is entitled to a little attention. I shall confine “sidereal day” to this 5th to avoid confusion with 4th. If you will extend the plane of the equator into the star sphere, you have the celestial equator. When the center of the sun passes through this plane on his journey north, in the Spring, we say, “the sun has crossed the line.” This is a distant point in the Zodiac which can be determined for any given year by reference to the fixed stars. To avoid technicalities as much as possible we will call it the point of the Spring equinox. This is really the point which determines the common year, or year of the seasons. Using popular language, the seasons are marked by four points,—Spring equinox—longest day—; Autumnal equinox—shortest day. This would be very simple if the equinoctial points would stay in the same places in the star sphere; but we find that they creep westward each year to the extent of 50 seconds of arc in the great celestial circle of the Zodiac. This is called the precession of the equinoxes. The year is measured from Spring equinox to Spring equinox again; but each year it comes 50 seconds of arc less than a full revolution of the earth around the sun. Therefore if we measured our year by a full revolution we would displace the months with reference to the seasons till the hot weather would come in January and the cold weather in July in about 13,000 years; or a complete revolution of the seasons back to where we are, in 26,000 years. Leaving out fractions to make the illustration plain, we have:—

(1) 360degreesofZodiac = 26,000 years
50 seconds of arc
(2) 1 day of time = 26,000 years
31/3 seconds
(3) 1 year of time = 26,000 years
201/3 minutes
(4) 31/3 seconds = 1/110 of a second
days in a year
all Approximate

In (1) we see that a “precession” of 50 seconds of arc will bring the Spring equinox around in 26,000 years.

In (2) we see, as 50 seconds of arc represents the distance the earth will rotate in 31/3 seconds, a difference of one day will result in 26,000 years. That is since the clock regulated by the stars, or absolute rotations of the earth, would get behind 31/3 seconds per year, it would be behind a day in 26,000 years, as compared with a sidereal clock regulated by the Spring equinoctial point.

In (3) we see that as 50 seconds of arc is traversed by the earth, in its annual revolution, in 201/3 minutes, a complete circle of the Zodiac will be made in 26,000 years.

In (4) we see that as the difference between the year of the seasons and the Zodiacal year is 31/3 seconds of the earth's rotation, it follows that if this is divided by the number of days in a year we have the amount which a sidereal day is less than 4th, or an absolute rotation of the earth. That is, any meridian passes the Spring equinoctial point 1/110 of a second sooner than the time of one absolute rotation. These four equations are all founded on the precession of the equinoxes, and are simply different methods of stating it. Absolutely and finally, our time is regulated by the earth's rotation; but strange as it may appear, we do not take one rotation as a unit. As shown above, we take a rotation to a movable point which creeps the 1/110 of a second daily. But after all, it is the uniform rotation which governs. This is the one “dependable” motion which has not been found variable, and is the most easily observed. When we remember that the earth is not far from being as heavy as a ball of iron, and that its surface velocity at the equator is about 17 miles per minute, it is easy to form a conception of its uniform motion. Against this, however, we may place the friction of the tides, forcing up of mountain ranges, as well as mining and building skyscrapers—all tending to slow it. Mathematicians moving in the ethereal regions of astronomy lead us to conclude that it must become gradually slower, and that it is slowing; but the amount may be considered a vanishing quantity even compared with the smallest errors of our finest clocks; so for uncounted generations past—and to come—we may consider the earth's rotation uniform. Having now found a uniform motion easily observed and of convenient period, why not adopt it as our time unit? The answer has been partially given above in the fact that we are compelled to use a year, measured from the Spring equinoctial point, so as to keep our seasons in order; and therefore as we must have some point where the sidereal clocks and the meantime clocks coincide, we take the same point, and that point is the Spring equinox. Now we have three days:—

  • 1st. A sidereal day 1/110 of a second less than one rotation of the earth.
  • 2nd. One rotation of the earth in 23 hours, 56 minutes and 4 seconds, nearly, of clock time.
  • 3rd. One mean time clock day of 24 hours, which has been explained previously.

Now, isn't it remarkable that our 24-hour day is purely artificial, and that nothing in nature corresponds to it? Our real day of 24 hours is a theoretical day. Still more remarkable, this theoretical day is the unit by which we express motions in the solar system. A lunar month is days—hours—minutes—and seconds of this theoretical day, and so for planetary motions. And still more remarkable, the earth's rotation which is itself the foundation is expressed in this imaginary time! This looks like involution involved, yet our 24-hour day is as real as reality; and the man has not yet spoken who can tell whether a mathematical conception, sustained in practical life, is less real than a physical fact. Our legal day of practical life is therefore deduced from the day of a fraction less than one earth rotation. In practice, however, the small difference between this and a rotation is often ignored, because as the tenth of a second is about as near as observations can be made it is evident that for single observations 1/110 of a second does not count, but for a whole year it does, and amounts to 31/3 seconds. Now as to the setting of our clocks. While the time measured by the point of the Spring equinox is what we must find it is found by noting the transits of fixed stars, because the relation of star time to equinoctial time is known and tabulated. Remember we cannot take a transit of the equinoctial point, because there is nothing to see, and that nothing is moving! But it can be observed yearly and astronomers can tell where it is, at any time of the year, by calculation. The stars which are preferred for observation are called “time stars” and are selected as near the celestial equator as possible. The earth's axis has a little wabbling motion called “nutation” which influences the apparent motion of the stars near the pole; but this motion almost disappears as they come near the equator, because nutation gives the plane of the equator only a little “swashplate” motion. The positions of a number of “time stars” with reference to the equinoctial point, are known, and these are observed and the observations averaged. The distance of any time star from the equinoctial point, in time, is called its “right ascension.” Astronomers claim an accuracy to the twentieth part of a second when such transits are carefully taken, but over a long period, greater exactness is obtained. Really, the time at which any given star passes the meridian is taken, in practical life, from astronomical tables in the Nautical Almanacs. Those tables are the result of the labors of generations of mathematicians, are constantly subject to correction, and cannot be made simple. Remember, the Earth's rotation is the only uniform motion, all the others being subject to variations and even compound variations. This very subject is the best example of the broad fact that science is a constant series of approximations; therefore, nothing is exact, and nothing is permanent but change. But you say that mathematics is an exact science. Yes, but it is a logical abstraction, and is therefore only the universal solvent in physical science.

With our imaginary—but real—time unit of 24 hours we are now ready to consider “local time.” Keeping the above explanation in mind, we may use the usual language and speak of the earth rotating in 24 hours clock time; and since motion is relative, it is permissible to speak of the motion of the sun. In the matter of the sun's apparent motion we are compelled to speak of his “rising,” “setting,” etc., because language to express the motion in terms of the earth's rotation has not been invented yet. For these reasons we will assume that in Fig. 47 the sun is moving as per large arrow and also that the annulus, half black and half white, giving the 24 hours, is fastened to the sun by a rigid bar, as shown, and moves around the earth along with him. In such illustrations the sun must always be made small in proportion, but this rather tends to plainness. For simplicity, we assume that the illustration represents an equinox when the sun is on the celestial equator. Imagine your eye in the center of the sun's face at A, and you would be looking on the meridian of Greenwich at 12 noon; then in one hour you would be looking on 15° west at 12 noon; but this would bring 13 o'clock to Greenwich. Continue till you look down on New York at 12 noon, then it is 17 o'clock at Greenwich (leaving out fractions for simplicity) etc. If you will make a simple drawing like Fig. 47 and cut the earth separate, just around the inside of the annulus, and stick a pin at the North Pole for a center, you may rotate the earth as per small arrow and get the actual motion, but the result will be just the same as if you went by the big arrow. We thus see that every instant of the 24 hours is represented, at some point, on the earth. That is, the earth has an infinity of local times; so it has every conceivable instant of the 24 hours at some place on the circle. Suppose we set up 1,410 clocks at uniform distances on the equator, then they would be about 17 miles apart and differ by minutes. Now make it 86,400 clocks, they would be 1,500 feet apart and differ by seconds. With 864,000 clocks they would be 150 feet apart and vary by tenths of seconds. It is useless to extend this, since you could always imagine more clocks in the circle; thus establishing the fact that there are an infinity of times at an infinity of places always on the earth. It is necessary to ask a little patience here as I shall use this local time and its failure later in our talk. Strictly, local time has never been used, because it has been found impracticable in the affairs of life. This will be plain when we draw attention to the uniform time of London, which is Greenwich time; yet the British Museum is 30 seconds slow of Greenwich, and other places in London even more. This is railroad time for Great Britain; but it is 20 minutes too fast for the west of England. This led to no end of confusion and clocks were often seen with two minute hands, one to local and the other to railroad time. This mixed up method was followed by “standard time,” with which we are all pretty well acquainted. Simply, standard time consists in a uniform time for each 15° of longitude, but this is theoretical to the extreme, and is not even approached in practice. The first zone commences at Greenwich and as that is near the eastern edge of the British Islands, their single zone time is fast at nearly all places, especially the west coast of Ireland. When we follow these zones over to the United States we find an attempt to make the middle of each zone correct to local time, so at the hour jumping points, we pass from half an hour slow to half an hour fast, or the reverse. We thus see that towns about the middle of these four United States zones have sunrise and sunset and their local day correct, but those at the eastern and western edges average half an hour wrong. As a consequence of this disturbance of the working hours depending on the light of the day, many places keep two sets of clocks and great confusion results. Even this is comprehensible; but it is a mere fraction of the trouble and complication, because the hour zones are not separated by meridians in practice, but by zig-zag lines of great irregularity. Look at a time map of the United States and you will see the zones divided by lines of the wildest irregularity. Now question one of the brightest “scientific chaps” you can find in one of the great railroad offices whose lines touch, or enter, Canada and Mexico. Please do not tell me what he said to you! So great is the confusion that no man understands it all. The amount of wealth destroyed in printing time tables, and failing to explain them, is immense. The amount of human life destroyed by premature death, as a result of wear and tear of brain cells is too sad to contemplate. And all by attempting the impossible; for local time, even if it was reduced to hourly periods is not compatible with any continental system of time and matters can only get worse while the attempt continues. For the present, banish this zone system from your mind and let us consider the beginning and ending of a day, using strictly local time.

LOI
Fig. 47—Local Time—Standard Time—Beginning and Ending of the Day

A civil, or legal, day ends at the instant of 24 o'clock, midnight, and the next day commences. The time is continuous, the last instant of a day touching the first instant of the next. This is true for all parts of the earth; but something in addition to this happens at a certain meridian called the “date line.” Refer again to Fig. 47 which is drawn with 24 meridians representing hours. As we are taking Greenwich for our time, the meridians are numbered from 0°, on which the observatory of Greenwich stands. When you visit Greenwich you can have the pleasure of putting your foot on “the first meridian,” as it is cut plainly across the pavement. Degrees of longitude are numbered east and west, meeting just opposite at 180°, which is the “date line.” Our day begins at this line, so far as dates are concerned; but the local day begins everywhere at midnight. Let us start to go around the world from the date line, westward. When we arrive at 90° we are one quarter around and it takes the sun 6 hours longer to reach us. At 0° (Greenwich) we are half around and 12 hours ahead of the sun motion. At 90° west, three quarters, or 18 hours, and when back to 180° we have added to the length of all days of our journey enough to make one day; therefore our date must be one day behind. Try this example to change the wording:—Let us start from an island B, just west of the date line. These islanders have their 24-hour days, commencing at midnight, like all other places. As we move westward our day commences later and later than theirs, as shown above. Suppose we arrive at the eastern edge of the 180° line on Saturday at 12 o'clock, but before we cross it we call over to the islanders,—what day is it? We would get answer, “Sunday;” because all our days have been longer, totalling one day in the circuit of the globe. So if we step over the line at 12 o clock Saturday, presto, it is 12 o'clock Sunday. It looks like throwing out 24 hours, but this is not so, since we have lived exactly the same number of hours and seconds as the islanders. In this supposition we have all the dates, however, but have jumped half of Saturday and half of Sunday, which equals one day. In practice this would not have been the method, for if the ship was to call at the island, the captain would have changed date on Friday night and thrown Saturday out, all in one piece, and would have arrived on their Sunday; so his log for that week would have contained only 6 days. It is not necessary to go over the same ground for a circuit of the globe eastward, but if you do so you will find that you shorten your days and on arriving at the date line would have a day too much; so in this case you would double a date and have 8 days in that week. In both cases this is caused by compounding your motion with that of the sun; going with him westward and lengthening your days, or eastward meeting him and shortening them. Figure 47 shows Greenwich noon, we will say on Monday, and at that instant, Monday only, exists from 0 to 24 o'clock on the earth; but the next instant, Tuesday begins at 180° B. In one hour it is noon of Monday at 15° West, and midnight at 165° East; so Tuesday is one hour old and there is left 23 hours of Monday. Monday steadily declines to 0 as Tuesday steadily grows to 24 hours; so that, except at the instant of Greenwich noon, there are always two days on the world at once. If we said that there are always two days on the world at once, we could not be contradicted; since there is no conceivable time between Monday and Tuesday; it is an instantaneous change. As we cannot conceive of no time, the statement that there is only one day on the earth at Greenwich noon is not strictly permissible. Since there are always two days on the world at once let us suppose that these two are December 31st and January 1st; then we have two years on the world at once for a period of 24 hours. Nine years ago we had the 19th and 20th centuries on the world at once, etc. As a mental exercise, you may carry this as far as you please. Suppose there was an impassable sea wall built on the 180° meridian, then there would be two days on the world, just as explained above; but, practically, there would be no date line, since in sailing west to this wall we would “lengthen our days,” and then shorten them the same amount coming around east to the other side of the wall, but would never jump or double a date. This explanation is founded, as it ought to be, on uniform local time, and is the simplest I can give. The date line is fundamentally simple, but is difficult to explain. When it is complicated by the standard time—or jumping hour system—and also with the fact that some islands count their dates from the wrong side of the line for their longitudes, scientific paradoxes arise, such as having three dates on the world at once, etc.; but as these things are of no more value than wasting time solving Chinese puzzles, they are left out. Ships change date on the nearest night to the date line; but if they are to call at some island port in the Pacific, they may change either sooner or later to correspond with its date. Here is a little Irish date line wit printed for the first time,—I was telling my bright friend about turning in on Saturday night and getting up for breakfast on Monday morning. “Oh,” said he, “I have known gentlemen to do as good as that without leaving New York City!”

As what is to follow relates to the growing difficulties of local time and a proposed method of overcoming them, let us recapitulate:—

  • 1st. Local time has never been kept, and the difficulties of using it have increased as man advanced, reaching a climax of absurdity on the advent of the railroad; so it broke down and became impractical.
  • 2nd. To make the irregular disorder of local time an orderly confusion, the “standard time”—jumping by hours—has helped a little, but only because we can tell how much it is wrong at any given place. This is its only advantage over the first method, where we had no means of knowing what to expect on entering any new territory. That is, we have improved things by throwing out local time to the extent of an hour.

My proposal is to throw local time out totally and establish one, invariable, universal time. Greenwich time being most in use now, and meridians numbered from it, may be taken in preference to any other. Still another reason is that the most important timekeepers in modern life—ship's chronometers—are set to Greenwich time. Universal time—no local time—only local day and night. Our 24-hour system is all right, so do not disturb it, as it gets rid of A.M. and P.M. and makes the day our unit of time. Our railroad time now throws out local time to the extent of one hour; but I propose to throw it out entirely and never change the clock hands from Greenwich time. The chronometers do that now, so let us conduct all business to that time.

Now refer to Fig. 46, in which Greenwich is taken as universal time. The annulus, half white and half black, indicates the average day and night, and is a separate ring in the dial which can be set so that “noon” is on the meridian of the place, as shown for four places in the illustration. It is the same dial in all four cases set to local day and night. Strictly, the local time conception is dropped and the local day left for regulating working and sleeping time. All business would have the same time. In traveling east we would not have the short hours; or west, the long hours. All clocks and watches would show the same time as ship's chronometers do now. The only change would be the names of the hours for the parts of the local day. This is just the difficulty, for we are so accustomed to associate a certain number, as seven, with the morning and breakfast time. Suppose breakfast time in London is 7 o'clock, then according to the local day it would be 12 o'clock breakfast time in New York; but in both cases it would be the same time with reference to the local daylight. Let it be distinctly understood that our association of 12 o'clock with noon is not necessary. The Japanese called it “horse” and “nine”—the ancient Romans, the New Testament writers, and the Turks called it the “sixth hour”—the astronomers now call it 24 o'clock, and the Chinese represent it by several characters; but, in all cases, it is simply the middle of the day at any place. By the proposed universal time, morning, noon, and evening would be—at any given place—the same hours. There would be no necessity of establishing legal noon with exactness to the meridian, because that would only regulate labor, meals, etc., and would not touch universal time. This is an important part of the proposal and is worth elaborating a little. Sections in manufacturing districts could make their working hours correspond at pleasure and no confusion would result. That is, local working hours to convenience but by the same universal time. Note how perfectly this would work in traveling,—you arrive in Chicago from the effete east and your watch corresponds all along with the railroad clocks. As you leave the station you glance up at the clock and see that Chicago noon is 17.30, so you set the day and night ring of your watch to match the same ring on the clock, but no disturbance of the hands. As you register at the hotel you ask,—dinner? and get answer, 24.30—then breakfast, 12.30. These questions are necessary now, so I do not add complication here. When you arrive in a strange city you must ask about meals, business hours, theater hours, “doors open” hours, etc., etc.; so all this remains the same. Let us put the matter forcibly,—while we count days, or dates, something must vary with east and west; I propose the fixing of hours for business and sleep to suit each locality, but an invariable time. Get rid of the idea that a certain number, as 7 o'clock, represents the age of the day at all places. See how this would wipe out the silly proposal to “save daylight” by setting the clock back and forward. Suppose workmen commenced at 12.30 in New York; for the long summer days make it 11.30, but no change in universal time. As this is the only difference from our present time system, keep the central conception, firmly,—universal time—local day and night.

LOI
Fig. 46—Universal Time Dial Set for Four Places

Suppose Chicago decided that “early to bed and early to rise” was desirable; then it could establish its legal noon as 17.30, which would be about 20 minutes early for its meridian. You could do business with Chicago for a lifetime and not find this out, unless you looked up the meridian of Chicago and found that it was 17.50 o'clock. None of the railroads or steamship lines of the city would need to know this, except as a matter of scientific curiosity, for the time tables would all be printed in universal time. For hiring labor, receiving and delivering goods, etc., they would only need to know Chicago business hours. To state the matter in different words,—Chicago would only need to decide what portion of the universal 24 hours would suit it best for its day and which for its night, and if it decided, as supposed above, to place its working day forward a little to give some daylight after labor, nothing would be disturbed and only the scientific would ever know. Certainly, “save daylight,” but do not make a fool of the clock! Having shown the great liberty which localities could take without touching the working of the system, the same remarks apply to ultra-scientific localities. A city might establish its noon to the instant; so it is possible—even if a little improbable—that the brilliant and scientific aldermen of New York might appoint a commission with proper campfollowers and instrument bearers to determine the longitude of the city to the Nth of a second and tell us where we “are at.” The glory of this achievement—and especially its total cost—would be all our own and incorruptible time would be untouched! We thus see that great local freedom and great accuracy are alike possible. With our present system, accuracy in local time is impracticable and has never even been attempted, and is confusion confused since we added the railroad hour jumps. Why did we nurse this confusion till it has become almost intolerable? Because man has always been a slave to mental associations, and habits. Primitive man divided the local day into parts and gave them names and this mental attitude sticks to us after it has served its day. The advantages of universal time could hardly be enumerated, yet we can have them all by dropping our childish association of 7 o'clock with breakfast time! Another example,—you visit a friend for a few days and on retiring the first night you ask “what is your breakfast hour”—“8 o'clock.” You have to ask this question and recollect the answer. Now tell me what difference it would make if the answer had been 13 o'clock? None whatever, unless, perhaps, that is, you do not like thirteen! You ask, how about ships? Ships now carry universal time and only change the clock on deck to please the simple minded passengers. How about the date line? No change whatever, so long as we use dates which means numbering local days. It is useless multiplying examples; all difficulties disappear, as if by magic, the moment we can free our minds of local time and the association of the same hour with the same portion of the day at all places. The great interest at present manifested in the attempts to reach the North Pole calls for some consideration of universal time in the extreme north. Commencing at the equator, it is easy to see that the day and night ring, Fig. 46, would represent the days and nights of 12 hours at all seasons. As we go north, however, this ring represents the average day and night. When we reach the Polar Circle, still going north, the daily rising and setting of the sun gradually ceases till we reach the great one-year day at the Pole, consisting of six months darkness and six months light. Let us now assume that an astronomical observatory is established here and the great equatorial placed precisely on the pole. At this point, local time, day and night, and the date line, almost cease to have a meaning. For this very reason universal time would be the only practical method; therefore, it more than stands the test of being carried to the extreme. Universal time would regulate working and sleeping here the same as at all other places. Strictly local time in this observatory would be an absurdity, because in walking around the telescope (pole) you would be in all instants of the 24 hours within five seconds! At the pole the day would commence at the same instant as at some assumed place, and the day and night ring would represent working and sleeping as at that place. Suppose this observatory to be in telegraphic communication with New York, then it would be best for the attendants to set their day and night to New York, so as to correspond with its business hours. Many curious suppositions might be made about this polar observatory with its “great night” and equally “great day.” It is evident that to keep count of itself it would be compelled to note dates and 24-hour days to keep in touch with us; so it would be forced to adopt the local day of some place like New York. This choice would be free, because a polar observatory would stand on all the meridians of the earth at once.

We are now in a position to consider the next possible—and even probable—improvement in our clocks and watches. To minimize the next step it might be well to see what we can do now. Clocks are often regulated by electric impulses over wires. Electricians inform me that they can do this by wireless; but that owing to the rapid attenuation of the impulses it cannot be done commercially, over great distances. In the history of invention the first step was to do something and then find a way of doing it cheaply enough for general use. So far as I know, the watch in the wearer's pocket has not yet been regulated by wireless; but I am willing to risk the statement that the editor of Popular Mechanics can name more than one electrician who can do this. A watch to take these impulses might be larger than our present watches, but it would not stay larger and would ultimately become much smaller. You know what has happened since the days of the big “onions” described in the third chapter. Fig. 34; so get your electric watch and make it smaller at your leisure. We have made many things commercially practicable, which looked more revolutionary than this. Now throw out the mainspring, wheels, pinions, etc., of our watches and reduce the machinery part to little more than dial and hands and do the driving by wireless, say, once every minute. I feel certain that I am restraining the scientific imagination in saying that the man lives among us who can do this. I repeat, that we now possess the elementary knowledge—which if collated and applied—would produce such a watch.

Now I have a big question to ask—the central note of interrogation in this little scientific conversation with you,—does the man live who can make the earth automatically record its rotation? Do not be alarmed, for I am prepared to make a guess as to this possibility. A direct mechanical record of the earth's rotation seems hopeless, but let us see what can be done. You are aware that some of the fixed stars have a distinct spectrum. It is not unreasonable to suppose that an instrument could be made to record the passage of such a star over the meridian. Ah, but you say, there is no mechanical force in this. Do not hurry, for we have long been acquainted with the fact that things which, apparently, have no force can be made to liberate something which manifests mechanical force. We could now start or stop the greatest steam engine by a gleam of sunlight, and some day we might be able to do as much by the lately discovered pressure of light. That is, we can now liberate the greatest forces by the most infinitesimal, by steps; the little force liberating one greater than itself, and that one another still greater. A good example is the stopping of an electric train, from a distance, by wireless. The standard clock in Philadelphia, previously referred to, is a delicate instrument and its most delicate part, having the least force, moves a little valve every minute, and by several steps liberates the air pressure, 200 feet higher in the tower, to move the four sets of great hands. I am not traveling beyond the record when I say that the invisible actinic rays could be used to liberate a great force; therefore what is there unreasonable in the supposition that the displacement of the sodium line in the spectrum of a star might be made to record the earth's rotation? So I say to the electrician—the optician—the photographer—the chemist and the mechanic.—get together and produce this watch. Permit me, with conventional and intentional modesty, to name the new timepiece Chroncosmic. For pocket use, it would be Cosmic watch. In the first chapter I allowed to the year 2,000 for the production of this watch, but it is likely we will not need to wait so long.

Having stated my proposal for universal time as fully as space will permit and given my guess as to the coming cosmic watch, let us in this closing paragraph indulge in a little mental exercise. Suppose we copy the old time lecturer on astronomy and “allow our minds to penetrate into space.” Blessed be his memory, he was a doer of good. How impressive as he repeatedly dropped his wooden pointer, and lo! It always moved straight to the floor; thus triumphantly vindicating universal gravitation!!!

We can think of a time system which would discard months, weeks and days. What is the meaning of the financial almanac in which the days are numbered from 1 to 365 or 366? Simply a step in the right direction, away from the months and weeks, so that the distance between any two dates may be seen at a glance. We would really be better without months and weeks. Now let us consider the year of the seasons as a unit—long since proposed by the astronomers—and divide it into 3,000 chrons. Clocks regulated by star transits, as at present, would divide this decimally, the fourth place being near enough to make the new pendulums of convenient length. This would throw out months, weeks and days, local time and the date line. Each of these chrons would represent the same time in the year, permanently. For example, 464.6731 would mark to a dixmilliemechron (a little more than one second) the point reached in the year; while the date does not, as I have shown in the first chapter. But you still object that this is a great number of figures to use in fixing a point in the year. Let us see what it takes to fix a point in the year now, August 24th, 11-16-32 P. M., New York standard time. A pretty long story, but it does not fix the point of the year even then; for it would require the assistance of an astronomer to fix such a point in any given year, say 1909. But 464.6731 would be eternally right in absolute time of the seasons, and has only one meaning, with no qualifications for any year whatever. I believe the astronomers should use a method something like this. Ah, but there is a difficulty in applying this to the affairs of daily life which looks insurmountable. This is caused by the fact that the day and year are incommeasurable. One of them cannot be exactly expressed in terms of the other. They are like the diagonal and side of a square. The day is now the unit and therefore the year has an interminable fraction; conversely, if we make the year the unit, then the day becomes an endless fraction. This brings us face to face with the local day which we ignored in our scientific year unit. We must regulate our labors, in this world, to day and night and, with the year unit, the chrons would bear no fixed relation to day and night, even for two days in succession. So the year unit and absolute time must be left to the astronomers; but the day unit and the uniform world day of universal time as explained in connection with Fig. 46 I offer as a practical system.

I am satisfied that all attempts to measure the year and the day by the same time yard stick must fail and keep us in our present confusion. Therefore separate them once for all time. Brought down to its lowest terms my final proposal is:—

  • 1st. An equinoctial year unit for the astronomers, divided somewhat as suggested, but no attempt to make the divisions even approximate to days and hours. This would fix all astronomical events, absolutely. A variation in the length of the year would not disturb this system, since the year itself would be the unit. In translating this astronomical, or year unit time, into clock time, no difficulties would be added, as compared with our present translation of sidereal time into clock time. Deal with the year unit and day unit separately and convert them mutually when necessary.
  • 2nd. A universal mean time day of 24 hours, as now kept at Greenwich, all human business being regulated by this time. Dates and the date line as well as leap years all being retained as at present.
  • 3rd. Weight and spring clocks and watches to be superseded by the cosmic clocks and watches regulated by wireless impulses from central time stations, all impulses giving the same invariable time for all places.
  • 4th. Automatic recording of the earth's rotations to determine this time.

To avoid any possibility of misunderstanding, I would advise never counting a unit till it is completed. We do this correctly with our hours, as we understand 24 o'clock to be the same as 0 o'clock. But we do not carry this out logically, for we say 24.30. How can this be so, since there is nothing more than 24 o'clock? It ought to be simply 30 minutes, or 0 hour 30 minutes. How can there be any hour when a new day is only 30 minutes old? This brings up the acrimonious controversy, of some years ago, as to whether there was any “year one.” One side insisted that till one year was completed there could only be months and days. The other side argued that the “year one” commenced at 0 and that the month and date showed how much of it had passed. Test yourself,—is this the year 1909, of which only 8 months have passed; or is it 1909 and 8 months more? Regarding the centuries there appears to be no difference of opinion that 1900 is completed, and that we are in the 20th century. But can you tell whether we are 8 years and 8 months into the 20th century or 9 years and 8 months? It ought to be, logically 1909 years complete and 8 months of the next year, which we must not count till it is completed. Take a carpenter's rule, we say 1/4 in.—1/2 in.—3/4 in., but do not count an inch till we complete it. When the ancients are quoted,—“about the middle of the third hour” there is no mistake, because that means 21/2 hours since sunrise. If we said the 1909th year that would be definite too, and mean some distance into that year. Popular language states that Greenwich is on the “first meridian”; strictly, it is on the zero meridian, or 0°. These matters are largely academic and I do not look on them as serious subjects of discussion; but they are good thought producers. Bidding you good-bye, for the present, it might be permissible to state that this conversational article on Time was intended to be readable and somewhat instructive; but especially to indicate the infinity of the subject, that thought and investigation might be encouraged.


Original spelling and grammar have mostly been retained. However, on page 31, “clepsydral” was changed to “clepsydra”.

Figures were moved from within paragraphs to between paragraphs. In addition, some figures were originally out of numerical sequence; they are now in sequence (all but Fig. 46, which does need to be the last illustration).

The transcriber created the cover image, and hereby places it into the public domain.

*******

This and all associated files of various formats will be found in:
/4/4/8/3/44838

Updated editions will replace the previous one--the old editions will be renamed.

1.F.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you 'AS-IS', WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.

The Foundation's principal office is located at 4557 Melan Dr. S. Fairbanks, AK, 99712., but its volunteers and employees are scattered throughout numerous locations. Its business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation's web site and official page at www.gutenberg.org/contact

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Most people start at our Web site which has the main PG search facility: www.gutenberg.org

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page