CHAPTER VII MERCURY, THE MOON, AND VENUS

Previous

The planet Mercury probably resembles Mars in many respects, but differs particularly in lacking an atmosphere. The fissures in the crust of the Earth or of Mars are as a rule rapidly filled and their contours largely hidden from sight by alluvium or sand carried by windstorms, so that they reveal themselves only through tremors and various emanations along their course. The fissures on Mercury on the other hand must remain as yawning chasms. It is probable that reducing gases stream out of these cracks as on Earth, and colour the environment in a darker shade than the other visible part of the planet’s surface, that is the hemisphere turned toward the Sun. Not very volatile gases, such as sal-ammoniac, other chlorides and sulphur, which on the Earth are deposited inside the fissures, may here spread over large areas and discolour surrounding territory, particularly where iron compounds are present, and, under the attack of sulphur, turn black. Lowell has made drawings of the dark spots visible on Mercury, one of which is reproduced as Fig. 25. These spots lie, as on Antoniadi’s drawing of the surface of Mars (Fig. 17a), arranged in lines which are almost straight or of a slight curvature only. This seems to indicate that the spots belong to areas immediately adjoining enormous fissures. According to Lowell’s drawing, these cracks are far more regularly distributed on Mercury than on Mars. Very close to the centre of the ever-sunny side we see a dark spot, a “lake.” It is evident that this spot is located in by far the hottest point on the surface of Mercury. This gives rise to the following conception. The hottest part of Mercury was naturally the last to solidify. Mercury evidently ceased to rotate around its own axis, leaving one side continually exposed to the Sun, while its surface yet consisted of lava that was fluid, at least where the sunshine was most intense. The weakest point on the planet was therefore the one just opposite the Sun. When later collapses occurred the cracks commenced at this weak point. We see on the figure how not less than six fissures radiate from this centre. Others were formed where the crust broke off from adjacent solid portions. These latter fissures have a less rectilinear appearance than those diverging from the centre of collapse. Along these faults, reducing gases no doubt issue from the interior of the planet and give a dark tone to the surface layers, which probably consist of ferruginous dust falling from space. In the neighbourhood of the Sun, such dust ought to be more plentiful, concentrated as it were by the gravitation of the Sun. Mercury lies five times nearer the Sun than the Earth does, and twelve times nearer than Mars. There probably also exist on Mercury, as on the Moon, large mountains which are not subject to the wear of running water and blowing sand. We cannot, however, observe them from the Earth. Possibly they correspond to the widely extended spots, which several investigators as Schroeter, Vogel, and others, have noticed, formations resembling the “seas” on the Moon. Vogel believed that he had found traces of water vapour in the atmosphere of Mercury as in that of Mars, a belief in both cases undoubtedly founded on erroneous observations.

Fig.25. Drawing by Lowell, representing the planet Mercury with “canals.”

Fig.26. A part of the moon near its south pole. The big crater above, in the interior and on the walls of which a large number of smaller craters appear, is Clavius. A little below and to the right is Longomontanus just at the edge of the shadow; almost in the middle of the picture appears Tycho with its central cone. The moon diameter corresponds to 43.4 cm. Photo by Yerkes Observatory.

Fig.27. Mare Serenitatis (below), Mare Tranquillitatis (upper left) and vicinity. To the left of Mare Serenitatis the great crater Posidonius; 2.8 cm. from the right edge a small white spot may be seen. This is the remarkable crater LinnÉ, said to have undergone changes. The moon diameter corresponds to 35.7 cm. Photo by Yerkes Observatory.

The part of Mercury which is turned from the Sun must be characterized by a tremendous cold due to radiation into space. The temperature stays probably about 200°C. (360°F.) below the freezing point of water (328° below zero F.). Even the most concentrated solutions we know of freeze to ice precipitating the salt considerably above this temperature. Moisture in fluid state can, therefore, not very well exist on this side. On the sunny hemisphere it must be lacking as well, due to evaporation over to the cold side. As a result, the desolation on Mercury must be far greater than that on Mars and surface changes caused by variations in temperature are almost precluded. On account of the so-called libration, certain dark portions near the boundary of the illuminated hemisphere occasionally enter the sunlight. But, during this interval, all traces of moisture are undoubtedly driven away from these parts, also never to return.

The Earth’s moon is not entirely as stagnant as Mercury, although on the whole it closely resembles this planet. The Moon always turns the same side to the Earth—a small libration exists here also—so that each part of its surface is illumined by the Sun during one half of the synodical month (29.53 days). This time, however, is so long that the moon’s surface in the meantime almost assumes the temperatures due to continuous sunlight and continuous night.

Some investigators, as W.H. Pickering, are persuaded that portions of the moon just emerged from the shadow show a lighter colour than after a short time of illumination. These observations, however, have not been accepted as correct. According to Pickering, the light colour should result from a slight formation of snow or hoar-frost during the long night of 355 hours. If an appreciable trace of vapour existed on the Moon, it ought to evaporate and form white caps over the poles where the Sun’s heat is not sufficiently strong to melt them. As no such signs have ever been observed, the faith in snow on the Moon is not likely to find many defenders.

The lunar mountains are not attacked by water or sandstorms, nor do they peel off due to rapid heating by the Sun. They rise, therefore, to full stature over their surroundings. Their height can be measured by the length of their shadows. MÄdler, in this manner, computed one of the peaks of the Mountain Newton to rise 7300 m. (24,000 ft.) above the territory on which its shadow falls. Six peaks reach between 6000 and 7000 m. (19,500 and 24,000 ft.), 21 between 5000 and 6000 m. (16,500 and 19,500 ft.), 82 between 4000 and 5000 m. (13,000 and 16,500 ft.), and 582 reach 2000 m. (6500 ft.) and more. These figures show the extraordinary mountainous character of the Moon’s surface compared to that of the Earth which is thirteen times larger.

In Fig. 26, we see a picture of the portion of the Moon most rich in volcanoes, with the crater Tycho in the centre and Clavius above.

The numerous volcanoes are particularly characteristic of the Moon. They vary in magnitude from a diameter of over 200 km. (125 miles), for example the colossal Clavius with its companion craters, down to dimensions just visible with the aid of a telescope. The largest exceed our biggest many times in width and differ essentially from them, inasmuch as their bottoms are flat, occasionally provided with smaller volcanic cones—see the crater Longomontanus to the right of Tycho on Fig. 26—and surrounded by a high (inwardly often very steep, outwardly more sloping) wall as on Clavius, Longomontanus, and Tycho. The largest, as for example Clavius, may be compared to a province such as Bohemia, surrounded as it is on all sides by mountains. The elevated ring, as well as the interior of Clavius, is adorned with numerous large and small craters. The smallest of these resemble hemispherical excavations in the crust of the Moon, or they may be small volcanic cones which break through the walls. Sometimes they are strung out like pearls along rents in the ground.

All these volcanoes have undoubtedly given passage from the interior to the surface of the Moon for enormous volumes of gases previously enclosed in the lunar magma. Nor is it less certain that these gases have consisted largely of water vapour. If this had been condensed to water, oceans and rivers would have been formed, and on the bottom of the seas would have been deposited sediments carried down from the mountains. Such, however, is not the case. The so-called “seas” on the Moon are indeed on a lower level than their surroundings, but their surface is even (see Fig. 27 with Mare Serenitatis below and Mare Tranquillitatis above to the left; see also Fig. 29 with Mare Imbrium below; it is bounded on the right by the “Carpathians”). The “seas” consist of volcanic rocks, and are not at all covered with loose sediments which if present ought to reflect light better than the volcanic vitreous rocks. But the lunar “seas” are much darker than the environments. This shows that seas proper, or bodies of water, have probably never existed on the Moon. Even before the surface had changed from its molten condition the water vapour had departed from the atmosphere, and the new quantities which the volcanoes emitted from the depths below disappeared so rapidly that lakes were never formed. The history of other atmospheric gases on the Moon was no doubt similar. All evidence, therefore, points to the conclusion that life never inhabited its rough surface. Fig. 27 shows that the “sea-bottoms” are not free from volcanoes. They also abound in folds, corresponding to mountain-chains on the Earth. These folds indicate old breaks in the crust while it was yet very thin. To the right, in Mare Serenitatis, appear a few white spots which W.H. Pickering ascribed to snow. The largest is the much discussed “crater” (?) LinnÉ. Mare Serenitatis is surrounded by a ring of volcanoes.

A noted astronomer, Cerulli, observed, when he directed a glass of moderate power, such as opera glasses, toward the Moon that the spots seemingly arranged themselves in rows forming intersecting lines similar to the canal-system on Mars. As the regularity disappeared with greater enlargement, Cerulli believed that the canal-system on Mars also would dissolve into small spots if a sufficiently powerful telescope were used. His idea, which partly has been verified, was more recently adopted by the Englishman, Maunder, who denies the existence of canals on Mars. Photography, however, has proved their reality (Fig. 18).

If we disregard the illusory reticulation, there are nevertheless on the surface of the Moon numerous designs of a nearly rectilinear outline. There are to begin with the sinuses, extended trenches, often dotted along their sides with minor volcanoes. Fig. 27 shows, in the upper right corner, two such sinuses, the right one with a small volcano, Hyginus, in the middle. There are, further, five such volcanoes in its left arm, not visible on the photograph, and two in the right arm. The second, “Sinus Ariadaeus,” commences to the left with the Volcano Ariadaeus, not visible on the figure. The explanation of the origin of these sinuses is probably to be found in the different contraction of the Moon’s surface layer and of the hotter substrata immediately after the solid crust was formed. In a way, they correspond therefore to cracks in the glazing on porcelain. Like the two sinuses just mentioned they frequently commence and end with small craters which formed weak spots in the crust that facilitated the original break. Later on, volcanoes broke through along the sinuses themselves. In several regions of the Moon, and particularly in the equatorial belt, observers have claimed discoveries of new sinuses and occasionally of minor craters, “which could not possibly have escaped notice if they had existed before.” At present, the almost unanimous verdict is that such changes are very improbable, and that the visibility of the “new” objects largely depends on favourable sidelight, so that they might well have been overlooked if the region in question previously was examined under less advantageous illumination.

The most peculiar formations on the Moon are the so-called “bright streaks” which as a rule issue in almost straight lines from some of the larger craters, particularly Tycho and Copernicus. Those around Tycho (see Fig. 28) do not seem to be either raised above nor depressed below the surroundings to any degree worth mentioning. For this reason they are not visible under oblique illumination as in Fig. 25. They proceed in straight lines independent of elevations. This quality is in striking conformity with the characteristics of fissures on earth as for instance those that traverse the Tyrrhenian Sea and the Calabrian mountains. They also resemble the canals on Mars in this respect. Nasmyth and Carpenter caused a glass ball, containing water under pressure, to break at one point and obtained a system of beams radiating from this point and vividly reminding of the streaks around the lunar craters. The same effect appears if a homogeneous plate, of glass for instance, is broken by a blow in one point. No doubt these streak centres were once centres of collapse although they sometimes now are found at a considerable elevation, like Tycho. This may be the result of a later secular lifting of the rocky substrata like the slow rise of the Scandinavian peninsula. The streaks around Copernicus (see Fig. 29) are very different from those around Tycho. They are not rectilinear and consist next to the crater of distinct mountain chains plainly visible under oblique illumination. They penetrate into Mare Imbrium (Fig. 29 below) crossing the mighty “Carpathian” mountains. Frequently, they are provided with minor volcanoes, as in the streak directed almost straight downward on the figure, i.e., to the north. They are obviously volcanic fissures like those on the Earth.

Fig.28. Tycho in full illumination with surrounding magnificent system of streaks. In the lower right corner Copernicus with a less regular system appears. Between them Mare Nubium, in the upper right Mare Humonum, with the great crater Gassendi below. The moon diameter corresponds to 16.7 cm. Photo by Yerkes Observatory. Compare Figs. 25 and 28, showing parts of the same territory under side light.

The streaks, in many cases, would not be visible at all were it not for their different colour, which is considerably lighter than that of the surroundings. The only explanation offered for this fact is the assumption that the original cracks were filled by some light matter forced out from the interior of the Moon, that is by the lunar magma. This magma was not very viscous, as it has spread out considerably beyond the edges of the cracks proper. These presumably, like those on Earth, were of a rather moderate width, not enough to be distinguishable at the Moon’s distance. Similar light-flowing emanations from long fissures are known also on our planet, for instance, from the Laki eruption on Iceland in 1783. The colour may be light simply by comparison with the previously solidified crust, which, optically, as regards reflexion of light, has proved very similar to obsidian or, even more like another volcanic mineral product, vitrophyre. It is also possible, however, that gas bubbles were liberated as the lava solidified and gave the surface a milkwhite appearance—gravity on the Moon is only one sixth of that on the Earth so that the bubbles would rise and evaporate extremely slowly from the magma. Due to the very low atmospheric pressure on the Moon, the bubbles would also occupy a larger volume than in a corresponding case on Earth and become more conspicuous in proportion. They probably partly remained on the surface of the outpoured lava as a thin scum, which hardened in that state. Since then, it has suffered no more change than all other formations on the Moon, while on the Earth it would soon have been scoured away by sand and water.

Fig.29. The great lunar crater Copernicus surrounded with streaks. Below the Carpathian mountain range and at bottom part of Mare Imbrium. The moon diameter corresponds to 55 cm. Photo by Yerkes Observatory.

Before we leave the Moon it may be well to say a few words about its colour. MÄdler states in agreement with several other observers that Mare Serenitatis, a “sea” on the Moon’s north side (25° latitude) just to the right of the centre meridian (see Fig. 27) is remarkable for its beautiful pure green colour, while Mare Crisium about 16° Lat. N. near the right edge of the Moon is of a dark grey-green hue. In Mare Humorum (about 22° Lat. S., not far from the edge of the Moon, see Fig. 28) grey and dark green shades alternate and in Mare Frigoris, just inside the lunar north pole, the colour is a dingy yellowish-green. In other words, the characteristic colour of the great lava seas is apparently green. This agrees closely with conditions on the Earth where similar formations are coloured green by silicates of ferrous protoxides, certain species of which are called green-stones. Franz, however, questions the observations of MÄdler and professes the belief that very light craters appear bluish and assumes this to be a contrast effect to the general yellow hue of the Moon. Langley investigated the lunar radiation with the spectroscope and found that the ratio of blue to yellow was smaller in the moonlight than in the sunlight, for which reason the general colour of the moon resembles that of yellow sandstone.

A very interesting observation was made at the Lowell observatory when investigating the spectrum of the sparse light reflected from the Earth to the portions of the Moon not exposed to the sunlight. It proved to be of a far more blue tinge than sunlight reflected from the Moon. Our conclusion must be that the Earth shines with a blue lustre. This is perfectly natural, as the diffused light which reaches us after having been scattered by particles suspended in the air (and by gas molecules as well) is a deep blue and there exists no reason why that part of the light which is thrown outward into space should be of a different colour. The Earth, therefore, is blue in contradistinction to Mars which is red, on account of its desert surface, and Venus which is bright white. The cloudy portions around the equator and the poles should appear light blue from without and should be separated by dark blue bands over the so-called horse latitudes, under which the cloudless desert regions are located on either side of the equator. (Compare the title page illustration.)

Compared to Mars the Moon offers a scene of far greater desolation. On Mars, we observe at least some considerable changes such as the disappearance of the white pole-caps at midsummer when at the same time a dark ring appears to surround them; then the “lakes” and the “canals” come into view, beginning close to the ring mentioned, later on nearer the equator, and finally on its other side, while the opposite pole-cap puts on its winter hue. Again, we have the sudden appearance, and equally hasty disappearance, of white spots, particularly in the neighbourhood of the lakes, and the sand storms which hide the surface of Mars and often fill its canals. The abruptness of the changes indicate that they are confined to a very thin surface layer. The formation, on the other hand, of canals, for many years unobserved, must be ascribed to a volcanic activity which, while feeble, yet must be seated in the deeper portions of the planet. In addition, a stunted vegetation of low forms is not unthinkable in the polar regions.

As against this, the Moon is undoubtedly a stellar body entirely insusceptible of surface change. Near its centre, it is probably not completely solidified and an extremely slow growth of the firm crust is therefore likely. Gases are no doubt set free during this process, but they are unable to penetrate the enclosing thick armour and remain therefore as bubbles in the hardening magma.

As a matter of fact, no changes have, with certainty, been detected on the Moon’s surface. It is true that the great Wm. Herschel, known as an excellent observer, believed that he discovered, in 1873, mountains which had not existed before that time, and SchrÖter, who diligently studied the lunar surface, was of the opinion that he too had discerned numerous changes. These discoveries, however, were doubted by careful critics, and after the publication of MÄdler’s great work about the Moon (1837) the complete stagnation on that body was taken for granted. Nevertheless, there are several astronomers, such as Schmidt in Athens (1866) and lately W.H. Pickering in Cambridge, Mass., who think that they have discerned considerable modifications. The former held that the crater LinnÉ (Fig. 27) had vanished since the publication of MÄdler’s work. In 1867, MÄdler, himself, proclaimed that it had the same appearance as before. Pickering, again, reports periodic changes of “snow” and “vegetation.” (Compare Fig. 27 taken from Pickering’s Moon-atlas.) Closer analysis, however, indicates that the phenomena are probably only apparent and depend on the angle of illumination at each particular time of observation. For some time, rather more than a quarter of a century, photography has been pressed into the service of lunar investigation with far more objective results than would be possible through direct ocular inspection alone. During this period, which, it must be admitted, is not very long, no distinct signs of changes have been recorded by the photographic plates.

The great difference between Mars and the Moon depends upon the existence of a real atmosphere on the former. The oxygen will probably vanish from Mars also, being used up in the course of disintegration. But nitrogen, argon, and the other permanent gases will always remain, as will the water vapour from the bodies of water ever present, particularly around the south pole. It is true that this water vapour also will diminish with sinking temperature and when the latter finally has reached the freezing point of the salt solutions on Mars, the canals and the lakes will cease to thaw out or liquify under the vapour distilled over from the warm to the cold pole. But sand storms and thin mist formations will always appear and cause colour changes on the desolate planet.

If we wish to picture to us the future fate of our Earth when it gradually enters the reign of darkness and cold in consequence of the enfeebling of the Sun, we must seek our illustration on Mars and not on the Moon. Slowly are the oceans going to freeze, finally down to their bottom, the abundance of the rainfalls will diminish, only light snow will now and then bring change to a surface evermore transformed into a sand desert as far as the continents reach. Rents in the rocky substrata of the latter will appear as dark lines, caused by the gases rising from the interior. When the temperature at the equator has fallen below the freezing point, the polar regions will remain the only parts where a light covering of frost will melt in the height of the summer season and where the last feeble organisms will eke out their hard existence, resorting to a prolonged winter’s sleep of their seeds and spores. Finally, the last remnant of life will also disappear and sandstorms alone, save for the gasps of gas emanation from fissures in the rocky ground, will bring relief to the monotonous desolation. Falling meteoric dust, which now exists in original state only on the bottom of the oceans, will gradually cover the entire surface of the Earth with a mantle coloured brick-red through the influence of atmospheric oxygen. When the oxygen itself is used up, the meteoric dust will retain its original greyish-green hue and lend it to the funeral pall of the Earth.

Very different conditions obtain on our neighbour planet, which is closer both to the Sun and to ourselves, the radiant Venus, an object of interested human attention already in ancient times. The average temperature there is calculated to about 47°C. (116.6°F.) assuming the sun constant to two calories per cubic centimeter (.061 cu. in.) per minute. The humidity is probably about six times the average of that on the Earth, or three times that in Congo where the average temperature is 26°C. (78.8° F). The atmosphere of Venus holds about as much water vapour 5 km. (3.1 miles) above the surface as does the atmosphere of the Earth at the surface. We must therefore conclude that everything on Venus is dripping wet. The rainstorms on the other hand do not necessarily bring greater precipitation than with us. The cloud-formation is enormous and dense rainclouds travel as high up as 10 km. (6.2 miles). The heat from the Sun does not attack the ground but the dense clouds, causing a powerful external circulation of air which carries the vapour to higher strata where it condenses into new clouds. Thus, an effective barrier is formed against horizontal air currents in the great expanses below. At the surface of Venus, therefore, there exists a complete absence of wind both vertically, as the Sun’s radiation is absorbed by the ever present clouds above, and horizontally due to friction. Disintegration takes place with enormous rapidity, probably about eight times as fast as on the Earth, and the violent rains carry the products speedily downhill where they fill the valleys and the oceans in front of all river mouths.

A very great part of the surface of Venus is no doubt covered with swamps, corresponding to those on the Earth in which the coal deposits were formed, except that they are about 30°C. (54°F.) warmer. No dust is lifted high into the air to lend it a distinct colour; Only the dazzling white reflex from the clouds reaches the outside space and gives the planet its remarkable, brilliantly white, lustre. The powerful air currents in the highest strata of the atmosphere equalize the temperature difference between poles and equator almost completely so that a uniform climate exists all over the planet analogous to conditions on the Earth during its hottest periods.

The temperature on Venus is not so high as to prevent a luxuriant vegetation. The constantly uniform climatic conditions which exist everywhere result in an entire absence of adaptation to changing exterior conditions. Only low forms of life are therefore represented, mostly no doubt belonging to the vegetable kingdom; and the organisms are nearly of the same kind all over the planet. The vegetative processes are greatly accelerated by the high temperature. Therefore, the lifetime of the organisms is probably short. Their dead bodies, decaying rapidly, if lying in the open air, fill it with stifling gases; if embedded in the slime carried down by the rivers, they speedily turn into small lumps of coal, which, later, under the pressure of new layers combined with high temperature, become particles of graphite. Fossils proper are not formed as was also the case in the early periods of the Earth.

The temperature at the poles of Venus is probably somewhat lower, perhaps about 10°C. (18°F.) than the average temperature on the planet. The organisms there should have developed into higher forms than elsewhere, and progress and culture, if we may so express it, will gradually spread from the poles toward the equator. Later, the temperature will sink, the dense clouds and the gloom disperse, and some time, perhaps not before life on the Earth has reverted to its simpler forms or has even become extinct, a flora and a fauna will appear, similar in kind to those that now delight our human eye, and Venus will then indeed be the “Heavenly Queen” of Babylonian fame, not because of her radiant lustre alone, but as the dwelling place of the highest beings in our solar system.

The ancients believed that the fates of men could be read in the stars and this faith persisted with the power of a religion until a few centuries ago. It was shared by the foremost astronomers, pre-eminently by Tycho Brahe, who endeavoured to support it through his investigations. Traces are yet to be found in popular conceptions. These ideas have been verified today in a certain sense although with a wholly different meaning than held by our forefathers. The planets do tell us the conditions that existed on the Earth at the first dawn of life and we can also draw from them a prediction of the fate that once, after milliards of years perhaps, will befall the latter descendants of present generations. In one respect the dreams of our ancestors have not proved true, namely, with reference to the habitability of the other globes in our solar system. According to the great Kant, conditions on the wandering stars outside of the Earth’s orbit were so favourable to life that their inhabitants ought to have reached a far higher development than beings on the Earth. The last remnant of this conception lives in the speculations about the marvellously proficient engineers who built the magnificent system of giant canals on Mars. A thorough critique has demonstrated that any other planet in our solar system hardly can offer an abode for higher beings, except this very Earth, which therefore justly may be called “the best of worlds” among those that we know. And yet, it was undoubtedly a great truth that Giordano Bruno gave his life for, because it is highly probable, nay almost certain, that around the countless suns which dot the firmament spin dark bodies, although unfortunately our most powerful lenses do not reveal them. A number of these unseen stellar bodies shelter living beings, which even might have climbed to a higher point on the ladder of evolution than have the inhabitants of the Earth.

Fig.17. Map of the planet Mars in Mercator’s projection according to drawing by Schiaparelli. A comparison with the drawing by Antoniadi (Fig. 17a) suggests that Schiaparelli has made a somewhat diagrammatic picture, which sets forth a very great number of strictly straight “canals.”

(larger)

Fig.17a. Map of the planet Mars in Mercator’s projection, drawn in 1909 by E.M. Antoniadi.
Explanations: Meredies = south; Oriens = east; Occidens = west;
Septentrio = north; Nix = snow.
Abbreviations: M = Mare, sea; S = Sinus, bay; Fr = Fretum, channel;
L = Lacus, lake; Fl = Flumen, river;
R = Regio, region; I = Insula, island;
Pr = Promontorium, cape.

(larger)


A Selection from the
Catalogue of

G.P. PUTNAM’S SONS
?
Complete Catalogue sent
on application


The Essence of Astronomy
Things Every One Should Know About the
Sun, Moon and Stars

By Edward W. Price

12mo. Fully Illustrated. Price $1.50. By mail, $1.65

Here is a volume quite different from the usual “popular book on astronomy.”

It answers in untechnical language the every-day questions of every-day people, the material being so arranged that it is readily available for quick reference use, as well as for interesting consecutive reading.

An individual chapter is devoted to each member of the Solar System. Special space is given to “Freaks and Oddities of the Skies.”

The illustrations are from photographs taken at the great observatories. The drawings of Mars are the most recent published, being made by Professor Lowell in January of this year.

The chronological table and annotated bibliography are of real value.

Sun Lore of All Ages
A Collection of Myths and Legends
Concerning the Sun
and its Worship

By William Tyler Olcott

Author of “Star Lore of All Ages,”
“A Field Book of the Stars,” etc.

8o. With 30 Illustrations. $2.50 net. By mail, $2.70

A companion volume to Star Lore of All Ages by the same author. It comprises a compilation of the myths, legends, and facts concerning the sun, of equal interest to the lay-reader or to the student.

The literature of the subject is teeming with interest, linked as it is with the life story of mankind from the cradle of the race to the present day, for the solar myth lies at the very foundation of all mythology, and as such must forever claim pre-eminence.

G.P. Putnam’s Sons
New York London

A
Beginner’s Star-Book

An Easy Guide to the Stars and to the
Astronomical Uses of the Opera-Glass, the
Field-Glass, and the Telescope

By Kelvin McKready

Square 8vo. Including 70 Illustrations.
$2.75 net. Postage Additional

This volume, peculiarly definite and helpful in method, is especially adapted to the practical needs of those who wish a well illustrated and clearly written handbook,—accurate in its scientific information and yet popular enough to meet the wishes of the average man or woman. The book is distinguished from other volumes on popular astronomy by a novel system of mapping, and by an unusually full discussion of the uses of the simpler astronomical instruments. Special care has been given to reproductions of recent astronomical photographs.

Mr. McKready’s book is the finest thing for the beginner that I have ever seen. It is a pleasure to read a book so excellent in so many different ways. I have never seen photographs reproduced better. I have never seen maps of the heavens so intelligible to the beginner, and I have never read explanations so concise and yet so complete as in this book.”—Prof. S.A. Mitchell, Department of Astronomy, Columbia University, New York City.


New York G.P. Putnam’s Sons London

A Revised Edition of a Standard Work


A Field Book of the Stars

By William Tyler Olcott

Author of “Star Lore of All Ages,” etc.

Second Edition, Revised. With Additional Material. 16o.
With Fifty Diagrams. $1.00 net. By mail, $1.10

In the new edition of this standard work the author has given full information, together with diagrams representing the result of the latest investigations. All matters of a technical or theoretical nature have been omitted. Only what the reader can observe with the naked eye or with an opera-glass have been included in it.

Excellently arranged and copiously illustrated, this manual is a real field-book and will prove valuable for all who wish to become familiar with the stars.


New York G.P. Putnam’s Sons London

Star Lore of All Ages

A Collection of Myths, Legends, and Facts,
Concerning the Constellations of the
Northern Hemisphere

By William Tyler Olcott

Author of “A Field Book of the Stars,” etc.

8o. With 164 Illustrations and Diagrams
$3.50 net. By mail, $3.75

“A sumptuous treasure-house in which the lover of ancient myth and modern miracle may wander for enchanted hours. Its red and gold doors open upon a gallery of masterpieces in art, all being inspired conceptions connected in some way with star lore. The pictures and the legends of all ages have been ransacked to make this gallery irresistible to art and nature lovers, and not in vain. Withal the most intense facts of astronomical knowledge and discovery are given beside the tapestried romance which earlier peoples wove with star-stuff as the medium of their art. It is a book delightful to the eye, scholarly in conception and treatment, and charming to the inner sense.”—From Scientific American.

“Here all the myths, legends, and facts relating to all our northern constellations are set forth fully as well as with scientific exactness, are illustrated with clear maps and diagrams, and are brought into close association with their classic origins by beautifully reproduced photographs of works of art and architecture.”

The Outlook.


New York G.P. Putnam’s Sons London

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page