CHAPTER VII. THE GENERAL PRINCIPLES OF MANURING.

Previous

In their natural condition all soils not absolutely barren are capable of supporting a certain amount of vegetation, and they continue to do so for an unlimited period, because the whole of the substances extracted from them are again restored, either directly by the decay of the plants, or indirectly by the droppings of the wild animals which have browzed upon them. Under these circumstances, a soil yields what may be called its normal produce, which varies within comparatively narrow limits, according to the nature of the season, temperature, and other climatic conditions. But the case is completely altered if the crop, in place of being allowed to decay on the soil, is removed from it, for, though the air will continue to afford an undiminished supply of those elements of the food of plants which may be derived from it, the fixed substances, which can only be obtained from the soil, decrease in quantity, and are at length entirely exhausted. In this way a gradual diminution of the fertility of the soil takes place, until, after the lapse of a period, longer or shorter, according to its natural resources, it will become entirely incapable of maintaining a crop, and fall into absolute infertility unless the substances removed from it are restored from some other source in the form of manure. When this is done, the fertility of the soil may not only be sustained but greatly increased, and, in point of fact, all cultivated soils, by the use of manure, are made to yield a much larger crop than they can do in their natural condition.

The fundamental principle upon which a manure is employed is that of adding to the soil an abundant supply of the elements removed from it by plants in the condition best fitted for absorption by their roots; but looked at in its broadest point of view, it acts not merely in this way, but also by promoting the decomposition of the already partially disintegrated rocks of which the soil is composed, setting free those substances it already contains, and facilitating their absorption by the plants.

In considering the practical applications of the broad general principle just stated, it might be assumed that a manure ought invariably to contain all the elements of plants in the quantities in which they are removed by the crops, and that when this has been accurately ascertained by analysis, it would only be necessary to use the various substances in the proportions thus indicated. But this, though a very important, and no doubt in many cases essential condition, is by no means the only matter which requires to be taken into consideration in the economical application of manures. And this becomes sufficiently obvious when the circumstances attending the exhaustion of the soil are minutely examined. When a soil is cropped during a succession of years with the same plant, and at length becomes incapable of longer maintaining it, the exhaustion is rarely, if ever, due to the simultaneous consumption of all its different constituents, but generally depends upon that of one individual substance, which, from its having originally existed in the soil in comparatively small quantity, is removed in a shorter time than the others. To restore the fertility of a soil in this condition, it is by no means necessary to supply all the different substances required by the plant, for it will suffice to add that which has been entirely removed. On the other hand, if an ordinary soil be supplied with a manure containing a very small quantity of one of the elements of plant food, along with abundance of all the others, the amount of increase which it yields must obviously be measured, not by those which are abundant, but by that which is deficient; for the crop which grows luxuriantly so long as it obtains a supply of all its constituents, is arrested as effectually by the want of one as of all, as has been proved by the experiments of Prince Salm Horstmar and others, referred to in a previous chapter; and hence, in order to obtain a good crop, it would be necessary to use the manure in such abundance as to supply a sufficiency of the deficient element for that purpose. If this course were persevered in for a succession of years, the other substances which would have been used in much more than the quantity required by the crops, must either have been entirely lost or have accumulated in the soil. In the latter case it is sufficiently obvious that the soil must have been gradually acquiring an amount of resources which must remain dormant until the system of manuring is changed. To render them available, it is only necessary to add to it a quantity of the particular substance in which the manure hitherto employed has been deficient, so as to restore the lost balance, and enable the plant to make use of those which have been stored up within it. The substance so used is called a special manure; that containing all the constituents of the crop is a general manure.

The distinction of these two classes of manures is very important in a practical point of view, because a special manure is not by itself capable of maintaining the life of plants, but is only a means of bringing into use the natural and acquired resources of the soil. In place of preventing or retarding its exhaustion, it rather accelerates it by causing the increased crops to consume more abundantly, and within a shorter period of time, those substances which it contains. On the other hand, a general manure prevents or diminishes the consumption of the elements of plant-food contained in the soil, and if added in sufficient abundance, may cause them to accumulate in it, and even enable an almost absolutely barren soil to yield a tolerable crop. General manures must therefore always be the most important and essential, and no others would be used if it were possible to obtain them of a composition exactly suited to the requirements of the crop to be raised. Practically, however, this condition cannot be fulfilled, because all the substances available for the purpose, and particularly farm-yard manure, are refuse matters, the exact composition of which is not under our control, and they do not necessarily contain their constituents either in the most suitable proportions, or the most available forms, and consequently when they are used during a succession of years, certain of their constituents may accumulate in the soil, and it is under such circumstances that special manures are both necessary and advantageous.

Several different substances, but more especially farm-yard manure, fulfil in a very remarkable manner the conditions of a general manure, and supply abundantly, not merely the mineral, but also the carbonaceous and nitrogenous matters necessary for building up the organic part of the plant; and hence its use is governed by principles of comparative simplicity, and really resolves itself into determining the best mode of managing it so as effectually to preserve its useful constituents, and, at the same time, to bring them into those forms of combination in which they are most available to the plant. But the employment of a special manure opens up nice questions as to the relative importance of the different elements of plants which have given rise to much controversy and difference of opinion.

In treating of the food of plants, it has been already observed that the fixed or mineral constituents which are contained in their ash, are necessarily derived exclusively from the soil, but that the carbon, hydrogen, nitrogen, and oxygen, of which their organic part is composed, may be obtained either from that source or from the air. The important distinction which thus exists between these two classes of substances, has given rise to two different views regarding the theory of manures. Basing his views on the presence of the organic elements in the air, Liebig has maintained that it is unnecessary to supply them in the manure, while others, among whom Messrs. Lawes and Gilbert have taken a prominent position, hold that, as a rule, fertile soils, cultivated in the ordinary manner, contain a sufficient supply of mineral matters for the production of the largest possible crops, but that the quantity of ammonia and nitric acid which the plants are capable of extracting from the air is insufficient, and must be supplemented by manures containing them. A large number of experiments have been made in support of these views, but the inferences which can be drawn from them are not absolutely conclusive on either side, and it is necessary to consider the matter in a general point of view.

Setting out from the proposition already so frequently referred to, that the plant cannot grow unless it receives a supply of all its elements, it must be obvious that if, to a soil containing a sufficiency of mineral matters to raise a given number of crops, a supply of ammonia be added, its total productive capacity cannot be thus increased; and though it may yield larger crops than it would have done without that substance, this can only be accomplished by a proportionate diminution of their number. In either case, the same quantity of vegetable matter will be produced, but the time within which it is obtained will be regulated by the supply of ammonia. That substance differs in no respect from any other element of plant-food, and used in this way is to all intents and purposes a special manure, and acts merely by bringing into play those substances which the soil already contains. Its effect may not be apparent until after the lapse of a very long period of time, but it ultimately leads to the exhaustion of the soil. If, on the other hand, a soil be continuously cropped until it ceases to yield any produce, it is manifest that the exhaustion must in this instance be entirely due to the removal of its available mineral nutriment, because the superincumbent air constantly changed by the winds must continue to afford the same unvarying supply of the organic elements, and the power of supporting vegetation would be restored to it, by adding the necessary inorganic matters. Hence when a soil, which in its natural condition is capable of yielding a certain amount of vegetable matter, is rendered barren by the removal of the crop, it may be laid down as an incontrovertible position, that its infertility is due to the loss of mineral matters, and that it may be restored to its pristine condition by the use of them, and of them only.

But the case is materially altered when we come to consider the course of events in a cultivated soil. The object of agriculture is to cause the soil, by appropriate treatment, to yield much more than its normal produce, and the question is, how this can be best and most economically effected in practice. According to Liebig, it is attained by adding to the soil a liberal supply of those mineral substances required by the plant, and that it is unnecessary to use any of the organic elements, because they are supplied by the air in sufficient quantity to meet the requirements of the most abundant crops. Other chemists and vegetable physiologists again hold that though a certain increase may be obtained in this way, a point is soon reached beyond which mineral matters will not cause the plant to absorb more ammonia from the air, although a further increase may be obtained by the addition of nitrogen in that or some other available form.

It is admitted on both sides, that all the elements of plant food are equally essential, and the controversy really lies in determining what practically limits the crop producible on any soil. The point at issue may be put in a clear point of view by considering the course of events on a soil altogether devoid of the elements of plants. If a small quantity of mineral matters be added to such a soil, it immediately becomes capable of supporting a certain amount of vegetation, deriving from the air the organic elements necessary for this purpose, and with every increase of the former, the air will be laid under a larger contribution of the latter, to support the increased growth, and this must proceed until the limit of supply from the atmosphere is reached. At this point a further supply of mineral matters alone must obviously be incapable of again increasing the crop, and it would thus be absolutely necessary to conjoin them with a proportionate quantity of organic substances. Liebig maintains that this limit is never attained in practice, but that the air affords ammonia and the other organic elements in excess of the requirements of the largest crop, while mineral matters are generally though not invariably present in the soil in insufficient quantity. Messrs. Lawes and Gilbert, on the other hand, believe that the soil generally contains an excess of mineral matters, and that a manure which is to bring out their full effect must contain ammonia, or some other nitrogenous substance fitted to supplement the deficient supply afforded by the atmosphere. In short, the question at issue is, whether there is or is not a sufficiency of atmospheric food to meet the demands of the largest crop which can practically be produced.

An absolutely conclusive reply to this question is by no means easy. The experiments by which it is to be resolved are complicated by the fact, that all soils capable of supporting anything like a crop, contain not only the mineral, but the organic elements of its food in large and generally in greatly superabundant quantity, and it is impossible satisfactorily to ascertain how much is derived from this source, and how much from the atmosphere. There are in fact no experiments in which the effects of a purely mineral soil have been ascertained. The important and carefully performed researches of Messrs. Lawes and Gilbert were made upon a soil which had been long under cultivation, and contained decaying vegetable matters in sufficient abundance to supply nitrogen to many successive crops, and it would be most unreasonable to assert that the produce they did obtain by means of mineral manures, drew the whole of its nitrogen from the air. On the contrary, it may be fairly assumed that the soil did yield a certain quantity of its nitrogenous compounds, but to what extent this occurs, it is impossible to determine. This difficulty is encountered more or less in all the other experiments, and precludes absolute conclusions. The same fallacy also besets the arguments of Liebig when he holds that the crop, increased by means of mineral manures alone, must derive the whole of the additional quantity of nitrogen which it contains from the air, as appears to be tacitly assumed throughout the whole discussion. So far from this being the case, it is just as likely that the mineral matters should cause the plants to take it from the soil, if it is there, as from the atmosphere.

Taking a general view of the whole question, it is evident that a certain amount of vegetation may always be produced by means of mineral manures, and the quantity obtained is generally much beyond the normal produce of the soil. But it is still open to doubt whether the largest possible crop can be thus obtained, although the balance of evidence is against it, and in favour of the addition of ammonia, and other nitrogenous and organic substances, to the soil. In actual practice manures containing nitrogen are more important, and more extensively applied than any others, and the quantity of that element thus used is very much larger than is generally supposed. Twenty tons of farm-yard manure, a quantity commonly applied, and often exceeded on well cultivated land, contain a sufficiency of organic matters to yield about 2-1/2 cwt. of nitrogen. A complete rotation, according to the six-course shift, contains almost exactly the same quantity of nitrogen, when we assume average crops throughout the whole, and it is thus made up.[K]

Lbs. of Nitrogen.
1. Turnips (13-1/2 tons) 60
2. { Wheat (28 bushels at 60 lbs.) 29
{ Straw 16
3. Hay (2-1/2 tons) 56
4. { Oats (34 bushels at 40 lbs.) 27
{ Straw 14
5. Potatoes (3 tons) 27
6. Wheat and straw as before 45
——
Total 274

The supply is therefore quite sufficient for the requirements of the crop; and when it is borne in mind that a considerable quantity of ammonia and nitric acid is annually carried down by the rain, and that during a long rotation other substances are very generally used in addition to farm-yard manure, it is obvious that the crop need not depend to any extent upon what it derives from the air. What is true of the nitrogenous matters applies with still greater force to the mineral constituents of the manure. Twenty tons of farm-yard manure contain 32 cwt. of mineral matters, while the average crops of a six course-shift contain only 1088 lbs., or less than one-third of this quantity. It is obvious, therefore, that in well manured land there must be a gradual increase of all the constituents of plants, but that of the mineral matters is relatively much greater than that of the nitrogenous. If therefore from any cause the crop produced on a soil to which farm-yard manure had been applied were greatly to exceed the average, the amount of produce, so far as the soil is concerned, would be limited not by deficiency of mineral, but of nitrogenous food. Hence also when farm-yard manure is liberally applied, there is a gradual accumulation of valuable matters, and a progressive improvement of the productive capacity of the soil.

It is far otherwise, however, if a special manure is employed, because in that case the crop is thrown upon the resources of the soil itself for all its constituents except those contained in the substance employed, and by persisting in its exclusive use exhaustion is the inevitable result. It would be wrong, however, to infer from this, that special manures are to be avoided. On the contrary, great benefits are derived from their judicious employment, and the circumstances under which they are admissible may be readily gathered from what has already been said. They are agents which bring into useful activity the dormant resources of the soil, they restore the proper balance between its different constituents, and supply the excessive demand of some particular elements. Thus, for instance, in a soil containing an abundant supply of mineral matters, a salt of ammonia or nitric acid increases the crop, by promoting the absorption of the substances already present. So likewise a soil on which young cattle and milch cows have been long pastured has its fertility restored by phosphate of lime, because that substance is removed in the bones and milk in relatively much larger proportion than any others.

The choice of a special manure is necessarily dependent on a great variety of circumstances, and is governed partly by the nature of the soil, and partly by that of the crop. It is obvious that cases may occur in which any individual element of the plant may be deficient, and ought to be supplied, but experience has shown that, as a rule, nitrogen and phosphoric acid are the substances which it is most necessary to furnish in this way, and which in all but exceptional cases produce a marked effect on the crop. The other substances, such as potash, soda, magnesia, etc., occasionally act beneficially, but the results obtained from them are very uncertain, and frequently entirely negative.

It has been commonly asserted that phosphates are specially adapted to root crops, and ammonia or nitrates to the cereals, and this statement is so far true, that the former are used with advantage on the turnip, while the latter act with great benefit on grain crops and more especially on oats and barley. The effect of the latter, however, is more or less apparent in all crops and on all soils, because it promotes the assimilation of the mineral matters already present. But its peculiar importance lies in the power which it has of promoting the rapid development of the young plant, causing it to send its roots out into the soil, and to spread its leaves into the air, thus enabling it to take from those two sources, abundance of the useful substances existing in them. But it ought to be distinctly understood, that the statement that particular manures are specially suited to particular crops must be assumed with some reservation, because everything depends upon the nature of the food contained in the soil. It is well known that there are many soils in which ammonia acts more favourably on the turnip than phosphates, and vice versa, and the difference is often due to the previous treatment. In many cases in which ammonia when first used proved most beneficial, it now begins to lose its effect, and the reason no doubt is, that by its means the phosphates existing in these soils have been reduced in amount, while the ammonia has accumulated, so that a change in the system of manuring becomes necessary. A general manure may be used year after year in a perfectly routine manner, but where a special manure is employed, the importance of watching its effects, and altering it as circumstances indicate, cannot be over-estimated. The length of time during which special manures have been extensively used has not been sufficient to bring this prominently before the agriculturist, but its importance must sooner or later force itself upon him, and he will then see the necessity for studying the succession of manures as well as that of crops.

Hitherto we have considered a manure merely as a source from which plants derive their food, but it exercises a scarcely less important action on the chemical and physical properties of the soil. Farm-yard manure, which, as we shall afterwards see, contains a large amount of decomposing vegetable and animal matters, yields a supply of carbonic acid, which operates on the mineral constituents, promotes their further disintegration, and thus liberates their useful elements. It affects also their physical properties, for it diminishes the tenacity of heavy clays; each straw as it decomposes forming a channel through which the roots of plants, air, and moisture can penetrate more readily than through the stiff clay itself. On the other hand, it diminishes the porosity of light sandy soils, causes them to retain moisture, and generally makes their texture more suitable to the plant. Special manures probably act to some extent chemically on the soil, but the nature of the changes they produce is as yet imperfectly understood. Superphosphates which are highly acid in all probability act powerfully on the mineral substances, and common salt, which, though of little importance to the plant, occasionally produces very striking effects, appears to exercise some decomposing action on the soil. It is difficult, however, to trace the mode in which they operate on a substance of such complexity as the soil. Lime, as we shall afterwards see, acts by promoting the decomposition of the vegetable matters on the soil, and possibly some other substances may have a similar effect.

In the application of manures to the soil there are several circumstances which must be taken into consideration. It is generally stated that they ought to be distributed as uniformly as possible, but this is not always necessary nor even advisable, and certainly is not acted on in practice. Much must depend upon the nature both of crop and soil. When the former throws out long and widely penetrating roots, the more uniformly the manure is distributed the better; but if the rootlets are short, it is clearly more advisable that it should be deposited at no great distance from the seed. Practically this is observed in the case of the potato and turnip, which are short rooted, and where the manure is generally deposited close to the seed. But this course is never adopted with the long rooted cereals, the manure being usually applied to the previous crop, so that the repeated ploughings to which the soil is subjected in the interval may distribute what remains as widely and uniformly as possible. In soils which are either excessively tenacious or light, the accumulation of the manure close to the plants has also the effect of producing an artificial soil in their immediate neighbourhood, containing abundance of plant-food, and having physical properties better fitted for the support of the plant. On the other hand, when a special manure is used alone, and with the view of promoting the assimilation of substances already existing in the soil, the more uniform its distribution the better, because it is essential that the roots which penetrate through it should find at every point they reach not only the original soil constituents, but also the substances used to supplement their deficiencies.

FOOTNOTES:

[K] The quantities here taken are the averages deduced from the agricultural statistics taken in Scotland some years since, with the exception of hay and straw, which are not included in them. I have therefore assumed a reasonable quantity in these cases.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page