CHAPTER II. THE PROXIMATE CONSTITUENTS OF PLANTS.

Previous

The substances absorbed by the plant, which are of simple composition, and contain only two elements, are elaborated within it, and converted into the many complicated compounds of which its mass is composed. Some of these, as, for example, the colouring matters of madder and indigo, the narcotic principle of the poppy, &c., are confined to a single species, or small group of plants, while others are found in all plants, and form the main bulk of their tissues. The latter are the only substances which claim notice in a treatise like the present. They have been divided into three great classes, of widely different properties, composition, and functions.

1st. The Saccharine and Amylaceous Constituents.—These substances are compounds of carbon, hydrogen, and oxygen, and all possess a certain degree of similarity in composition, the quantities of hydrogen and oxygen they contain being always in the proportion required to form water, so that they may be considered as compounds of carbon and water; not that it can be asserted that they actually do contain water, as such, for of that there is no evidence, but only that its elements are present in the proportion to form it.

Cellulose.—This substance forms the fundamental part of all plants. It is the principal constituent of woody fibre, and is found in a state of purity in the fibre of cotton and flax, and in the pith of plants; but in wood it is generally contaminated with another substance, which has received the name incrusting matter, because it is deposited in and around the cells of which the plant is in part composed. Cellulose is insoluble in all menstrua, but, when boiled for a long time with sulphuric acid, is converted into a substance called dextrine. Cellulose consists of—

From pith of Elder-tree. Spongioles of roots.
Carbon 43·37 43·00
Hydrogen 6·04 6·18
Oxygen 50·59 50·82
——— ———
100·00 100·00

It is represented chemically by the formula, C24H21O21, which shows it to be a compound of 24 atoms of carbon with 21 of hydrogen and 21 of oxygen.

Incrusting matter.—Large quantities of this substance enter into the composition of all plants. Of its chemical nature little is known, as it cannot be obtained separate from cellulose, but it is analogous to that substance in its composition, and probably contains hydrogen and oxygen in the proportion to form water.

Starch.—Starch is one of the most abundant constituents of plants, and is found in most seeds, as those of the cereals and the leguminous plants; in the tubers of the potatoe, the bulbs of tulips, &c. &c. It is obtained by placing a quantity of wheat flour in a bag, and kneading it under a gentle stream of water. When the water is allowed to stand, it deposits the starch as a fine white powder, which, when examined by the microscope, is found to be composed of minute grains, formed of concentric layers deposited on one another. These grains vary considerably in size and structure in different plants; but in the same plant they are generally so much alike as to admit of their recognition by a practised observer. They were formerly believed to be composed of an external coating of a substance insoluble in water, and containing in their interior a soluble kernel; but this opinion has been refuted, and distinct evidence been brought to show that the exterior and interior of the globules are identical in chemical properties. Starch is insoluble in cold water, but by boiling, it dissolves, forming a thick paste. By long continued boiling with water containing a small quantity of acid, it is completely dissolved and converted into dextrine, and eventually into sugar. The same change is produced by the action of fermenting substances, such as the extract of malt; when heated in the dry state to a temperature of about 390 Fahr., it becomes soluble in cold water. It is distinguished by giving a brilliant blue compound with iodine. Starch contains—

Carbon 44·47
Hydrogen 6·28
Oxygen 49·25
———
100·00

and its composition is represented by the formula C12H10O10, so that it differs but little from cellulose in composition, although its chemical functions in the plant are extremely different. It is connected with some of the most important changes which occur in the growing plants, and by a series of remarkable transformations is converted into sugar and other important compounds.

Lichen Starch is found in most species of lichens, and is distinguished from common starch by producing a green colour with iodine. Its composition is the same as that of ordinary starch.

Inuline.—The species of starch to which this name is given is characterised by its dissolving in boiling water, and giving a white pulverulent deposit in cooling. It is found in the tuber of the dahlia, in the dandelion, and some other plants. Its composition is identical with that of cellulose, and its formula is C24H21O21.

Gum is excreted from various plants as a thick fluid, which dries up into transparent masses. Its composition is identical with that of starch. It dissolves readily in cold water, and is converted into sugar by long continued boiling with acids. Its properties are best marked in gum arabic, which is obtained from various species of acacia; that from other plants differs to some extent, although its chemical composition is the same.

Dextrine.—When starch is exposed to a heat of about 400°, or when treated with sulphuric acid, or with a substance extracted from malt called diastase, it is converted into dextrine. It may also be obtained from cellulose by a similar treatment. The dextrine so obtained has the same composition as the starch from which it is produced, but its properties more nearly resemble those of gum. It plays a very important part in the process of germination, and may be converted into sugar on the one hand, and apparently also into starch on the other.

Sugar.—Under this name are included four or five distinct substances, of which the most important are, cane sugar, grape sugar, and the uncrystallisable sugar found in many plants.

Cane Sugar.—This variety of sugar, as its name implies, is found most abundantly in the sugar cane, but it occurs also in the maple, beet-root, and various species of palms, from all of which it is extracted on the large scale. It is extremely soluble in water, and can be obtained in large transparent prismatic crystals, as in common sugar-candy. It swells up, and is converted into a brown substance called caramel, when heated, and by contact with fermenting substances, yields alcohol and carbonic acid. It contains—

Carbon 42·22
Hydrogen 6·60
Oxygen 51·18
———
100·00

and its chemical formula is C12H11O11.

Grape Sugar is met with in the grape, and most other fruits, as well as in honey. It is produced artificially when starch is boiled for a long time with sulphuric acid, or treated with a large quantity of diastase. It is less soluble in water than cane sugar, and crystallises in small round grains. Its composition, when dried at 284°, is—

Carbon 40·00
Hydrogen 6·66
Oxygen 53·34
———
100·00

and its formula is C12H12O12; but when crystallised it contains two equivalents of water, and is then represented by the formula C12H12O12 + 2H2O.

The uncrystallisable sugar of plants is closely allied to grape sugar, and, so far as at present known, has the same composition, although, from the difficulty of obtaining it quite free from crystallised sugar, this is still uncertain.

Mucilage is the name applied to the substance existing in linseed, and in many other seeds, and which communicates to them the property of swelling up and becoming gelatinous when treated with water. It is found in a state of considerable purity in gum tragacanth and some other gums. Its composition is not known with absolute certainty, but it is either C24H19O19, or C12H10O10; and in the latter case it must be identical with starch and gum.

It will be observed that all the substances belonging to this class are very closely related in chemical composition, some of them, as starch and gum, though easily distinguished by their properties, being identical in constitution, while others only differ in the quantity of water, or of its elements which they contain. In fact, they may all be considered as compounds of carbon and water, and their relations are, perhaps, more distinctly seen when their formulÆ are written so as to show this, as is done in the following table, in the second column of which those containing twelve equivalents of carbon are doubled, so as to make them comparable with cellulose:—

Water.
Grape sugar, C12H12O12 C24H24O24 C24 + 24
Cane sugar, C12H11O11 C24H22O22 C24 + 22
Cellulose, C24H21O21 C24H21O21 C24 + 21
Inuline, C24H21O21 C24H21O21 C24 + 21
Starch, C12H10O10 C24H20O20 C24 + 20
Dextrine, C12H10O10 C24H20O20 C24 + 20
Gum, C12H10O10 C24H20O20 C24 + 20
Mucilage, C12H10O10 C24H20O20 C24 + 20

The relation between these substances being so close, it is not difficult to understand how one may be converted into another by the addition or subtraction of water. Thus, cellulose has only to absorb an equivalent of water to become grape sugar, or to lose an equivalent in order to be converted into starch, and we shall afterwards see that such changes do actually occur in the plant during the process of germination.

Pectine and Pectic Acid.—These substances are met with in many fruits and roots, as, for instance, in the apple, the carrot, and the turnip. They differ from the starch group in containing more oxygen than is required to form water along with their hydrogen; but their exact composition is still uncertain, and they undergo numerous changes during the ripening of the fruit.

2d. Oily or Fatty Matters.—The oily constituents of plants form a rather extensive group of substances all closely allied, but distinguished by minor differences in properties and constitution. Some of them are very widely distributed throughout the vegetable kingdom, but others are almost peculiar to individual plants. They are all compounds of carbon, hydrogen, and oxygen, and are at once distinguished from the preceding class, by containing much less oxygen than is required to form water with their hydrogen. The principal constituents of the fatty matters and oils of plants are three substances, called stearine, margarine, and oleine, the two former solids, the latter a fluid; and they rarely, if ever, occur alone, but are mixed together in variable proportions, and the fluidity of the oils is due principally to the quantity of the last which they contain. If olive oil be exposed to cold, it is seen to become partially solid; and if it be then pressed, a fluid flows out, and a crystalline substance remains; the former is oleine, though not absolutely pure, and the latter margarine. The perfect separation of these substances involves a variety of troublesome chemical processes; and when it has been effected, it is found that each of them is a compound of a peculiar acid, with another substance having a sweet taste, and which has received the name of glycerine, or the sweet principle of oil. Glycerine, as it exists in the fats, appears to be a compound of C3H2O, and its properties are the same from whatever source it is obtained. The acids separated from it are known by the names of margaric, stearic, and oleic acids.

Margaric Acid is best obtained pure by boiling olive oil with an alkali until it is saponified, and decomposing the soap with an acid, expressing the margaric acid, which separates, and crystallising it from alcohol. It is a white crystalline fusible solid, insoluble in water, but soluble in alcohol and in solutions of the alkalies. Its composition is—

and its formula C34H34O4.

Stearic Acid.—Although this acid exists in many plants, it is most conveniently extracted from lard. It is a crystalline solid less fusible than margaric acid, but closely resembling it in its other properties. Its formula is C36H36O4.

Oleic Acid.—Under this name two different substances appear to be included. It has been applied generally to the fluid acids of all oils, while it would appear that the drying and non-drying oils actually contain substances of different composition. The acid extracted from olive oil appears to have the formula C36H34O4, while that from linseed oil is C46H38O6, but this is still doubtful.

Other fatty acids have been detected in palm oil, cocoa-nut oil, &c. &c., which so closely resemble margaric and stearic acids as to be easily confounded with them. Though presenting many points of interest, it is unnecessary to describe them in detail here.

Wax is a substance closely allied to the oils. It consists of two substances, cerine and myricine, which are separated from one another by boiling alcohol, in which the former is more soluble. They are extremely complex in composition, the former consisting principally of an acid similar to the fatty acids, called cerotic acid, and containing C54H54O4. The latter has the formula C92H92O4. The wax found in the leaves of the lilac and other plants appears to consist of myricine, while that extracted from the sugar-cane is said to be different, and to have the formula C48H50O2. It is probable that other plants contain different sorts of wax, but their investigation is still so incomplete, that nothing definite can be said regarding them. Wax and fats appear to be produced in the plant from starch and sugar; at least it is unquestionable that the bee is capable of producing the former from sugar, and we shall afterwards see that a similar change is most probably produced in the plant. The fatty matters contained in animals are identical with those of plants.

3d. Nitrogenous or Albuminous Constituents of Plants and Animals.—The nitrogenous constituents of plants and animals are so closely allied, both in properties and composition, that they may be most advantageously considered together.

Albumen.—Vegetable albumen is found dissolved in the juices of most plants, and is abundant in that of the potato, the turnip, and wheat. In these juices it exists in a soluble state, but when its solution is heated to about 150°, it coagulates into a flocky insoluble substance. It is also thrown down by acids and alcohol. Coagulated albumen is soluble in alkalies and in nitric acid. Animal albumen exists in the white of eggs, the serum of blood, and the juice of flesh; and from all these sources is scarcely distinguishable in its properties from vegetable albumen.

It is a substance of very complicated composition, and chemists are not agreed as to the formula by which its constitution is to be expressed, a difficulty which occurs also with most of the other nitrogenous compounds. The results of the analyses of albumen from different sources are however quite identical, as may be seen from those subjoined—

From Wheat. From Potatoes. From Blood. From White of Egg.
Carbon 53·7 53·1 53·4 53·0
Hydrogen 7·1 7·2 7·0 7·1
Nitrogen 15·6 ... 15·5 15·6
Oxygen }{ ... 22·1 22·9
Sulphur }23·6{ 0·97 1·6 1·1
Phosphorus }{ ... 0·4 0·3
—— —— ——
100·0 100·0 100·0

Closely allied to vegetable albumen is the substance known by the name of glutin, which is obtained by boiling the gluten of wheat with alcohol. It appears to be a sort of coagulated albumen, with which its composition completely agrees.

Vegetable Fibrine.—If a quantity of wheat flour be tied up in a piece of cloth, and kneaded for some time under water, the starch it contains is gradually washed out, and there remains a quantity of a glutinous substance called gluten. When this is boiled with alcohol, the glutin above referred to is extracted, and vegetable fibrine is left. It dissolves in dilute potash, and on the addition of acetic acid is deposited in a pure state. Treated with hydrochloric acid, diluted with ten times its weight of water, it swells up into a jelly-like mass. When boiled or preserved for a long time under water, it cannot be distinguished from coagulated albumen.

Animal Fibrine exists in the blood and the muscles, and agrees in all its characters and composition with vegetable fibrine, as is shown by the subjoined analyses—

Wheat Flour. Blood. Flesh.
Carbon 53·1 52·5 53·3
Hydrogen 7·0 6·9 7·1
Nitrogen 15·6 15·5 15·3
Oxygen 23·2 24·0 23·1
Sulphur 1·1 1·1 1·2
—— —— ——
100·0 100·0 100·0

Caseine.—Vegetable caseine exists abundantly in most plants, especially in the seeds, and remains in the juice after albumen has been precipitated by heat, from which it may be separated in flocks by the addition of an acid. It has been obtained for chemical examination, principally from peas and beans, and from the almond and oats. When prepared from the pea it has been called legumine, from almonds emulsine, and from oats avenine; but they are all three identical in their properties, although formerly believed to be different, and distinguished by these names. Vegetable caseine is best obtained by treating peas or beans with hot water, and straining the fluid. On standing, the starch held in suspension is deposited, and the caseine is retained in solution in the alkaline fluid; by the addition of an acid it is precipitated as a thick curd. Caseine is insoluble in water, but dissolves readily in alkalies; its solution is not coagulated by heat, but, on evaporation, becomes covered with a thin pellicle, which is renewed as often as it is removed.

Animal Caseine is the principal constituent of milk, and is obtained by the cautious addition of an acid to skimmed milk, by which it is precipitated as a thick white curd. It is also obtained by the use of rennet, and the process of curding milk is simply the coagulation of its caseine. It is soluble in alkalies, and precipitated from its solution by acids, and in all other respects agrees with vegetable caseine.

The composition of animal caseine has been well ascertained, but considerable doubt still exists as to that of vegetable caseine, owing to the difficulty of obtaining it absolutely pure. The analyses of different chemists give rather discordant results, but we have given those which appear most trustworthy—

From Peas.
Carbon 50·6 50·7
Hydrogen 6·8 6·6
Nitrogen 16·5 15·8
Oxygen 25·6 23·8
Sulphur 0·5 0·8
Phosphorus ... 2·3
—— ——
100·0 100·0

Other results differ considerably from these, and some observers have even obtained as much as eighteen per cent of nitrogen and fifty-three of carbon.

The composition of animal caseine differs from this principally in the amount of carbon. Its composition is—

Carbon 53·6
Hydrogen 7·1
Nitrogen 15·8
Oxygen 22·5
Sulphur 1·0
——
100·0

The most cursory examination of these analytical numbers is sufficient to show that a very close relation subsists between the different substances just described. Indeed, with the exception of vegetable caseine, they may be said all to present the same composition; and, as already mentioned, there are analyses of it which would class it completely with the others. While, however, the quantities of carbon, hydrogen, nitrogen, and oxygen are the same, differences exist in the sulphur and phosphorus they contain, and which, though very small in quantity, are indubitably essential to them. Much importance has been attributed to these constituents by various chemists, and especially by Mulder, who has endeavoured to make out that all the albuminous substances are compounds of a substance to which he has given the name of proteine, with different quantities of sulphur and phosphorus. The composition of proteine, according to his newest experiments, is—

Carbon 54·0
Hydrogen 7·1
Nitrogen 16·0
Oxygen 21·4
Sulphur 1·5
——
100·0

and is exactly the same from whatever albuminous compound it is obtained. Although the importance of proteine is probably not so great as Mulder supposed, it affords an important illustration of the close similarity of the different substances from which it is obtained, the more especially as there is every reason to believe that the different albuminous compounds are capable of changing into one another, just as starch and sugar are mutually convertible; and the possibility of this change throws much light on many of the phenomena of nutrition in plants and animals. Indeed, it would seem probable that these compounds are formed from their elements by plants only, and are merely assimilated by animals to produce the nitrogenous constituents they contain.

Diastase is the name applied to a substance existing in malt, and obtained by macerating that substance with cold water, and adding a quantity of alcohol to the fluid, when the diastase is immediately precipitated in white flocks. It is produced during the malting process, and is not found in the unmalted barley. Its chemical composition is unknown, but it is nitrogenous, and is believed to be produced by the decomposition of gluten. If a very small quantity of diastase be mixed with starch suspended in hot water, the starch is found gradually to dissolve, and to pass first into the state of dextrine, then into that of sugar. The change thus effected takes place also in a precisely similar manner in the plant, diastase being produced during the process of germination of all seeds and tubers, for the purpose of effecting this change, and to fulfil other functions less understood, but no doubt equally important. Diastase is found in the seeds only during the period when the starch they contain is passing into sugar; as soon as that change has taken place, its function is ended, and it disappears.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page