White caries, the most formidable variety known, may be produced by nitric acid, and in these cases all the components of the tooth are acted upon and disintegrated as far as the action extends. In proximal cavities attacked by this kind of caries, separate freely on the lingual side, and fill with tin. When such fillings have been removed the dentin has been found somewhat discolored and greatly solidified as compared to its former condition; this solidification or calcification is more frequent under tin than gold, which is partly due to the tin as a poor conductor of heat. Nature will not restore the lost part, but will do the next best thing—solidify the dentin. In some cases, under tin, the pulp gradually recedes, and the pulp-cavity is obliterated by secondary dentin. In other cases the pulps had partly calcified under tin. It has been known for years that tin would be tolerated in large cavities very near the pulp without causing any trouble, and one reason for this is its low conducting power. Attention is called to the fact that gold is nearly four times as good a conductor of heat as tin, and more than six times as good a conductor of electricity. Where tin fillings Tin foil has been found in the market that under a magnifying glass showed innumerable tiny black specks, which, upon being touched with an instrument, crumbled away, leaving a hole through the No. 10 will answer for all cases, and it is not as liable to be torn or cut by the plugger as a lower number, but one need not be restricted to it, as good fillings can be made with Nos. 4, 6, or 8. More teeth can be saved with tin than with any other metal or metals, and the average dentist will do better with tin than with gold. It is invaluable when the patient is limited for time or means, and also for filling the first permanent molars, where we so often find poor calcification of tooth-structure. In cases of orthodontia, where caries has attacked a large number of teeth, it is well to fill with tin, and await further developments as to irregularity and caries. If cavities are of a good general retaining form, that will be sufficient to hold the filling in place; but if not, then cut slight opposing angles, grooves, or pits. Cavities are generally prepared the same as for gold, except where there is a great deal of force brought upon the filling; then the grooves or pits may be a little larger; still, many cavities can be well filled with less excavating than required for gold, and proximal cavities in bicuspids and molars, where there is sufficient space, can be filled without removing the occlusal surface, and here In proximal cavities involving the occlusal surface, cut the cervical portion down to a strong square base, with a slight pit, undercut, or angle, at the buccal and lingual corners; where there is sufficient material, a slight groove across the base, far enough from the margin so that it will not be broken out, can be made in place of the pit, undercut, or angle; then cut a groove in the buccal and lingual side (one or both, according to the amount of material there is to work upon), extending from the base to the occlusal surface; in most of these cases the occlusal grooves or pits would have to be excavated on account of caries; thus there would be additional opportunity for anchorage. In place of the grooves the cavity may be of the dovetail form. In nearly all proximal cavities in bicuspids and molars, some form of metal shield, or matrix, is of great advantage, as they prevent the tin from crushing or sliding out. By driving the tin firmly against the metal, a well-condensed surface is secured; and as the metal yields a little, we can with a bevel or thin plugger force the tin slightly between Be sure that all margins are made perfect as the work progresses, and if the cavity is deep and a wide shield shuts out the light, then use a narrow one, which can be moved toward the occlusal surface from time to time. In filling the anterior teeth when the labial wall is gone, and the lingual wall intact or nearly so, use a piece of thin metal three-quarters of an inch long and wide enough to cover the cavity in the tooth to be filled, insert it between the teeth, and bend the lingual end over the cavity; the labial end is bent out of the way over the labial surface of the adjoining tooth, as shown in Fig. 4. When the labial wall is intact or nearly so, access to the cavity should be obtained from the lingual side, and in It is preferable to save the labial wall and line it with (say) five layers of No. 4 semi-cohesive gold folded into a mat and extended to the outer edge of the cavity; this gives the tooth a lighter shade, and bicuspids or molars can be filled in the same manner. Cases are on record where incisors with translucent labial walls, filled by this method, have lasted from twenty-three to thirty-seven years. |