SURGERY

Previous

The end of the eighteenth century was made notable by one of the most remarkable and beneficent discoveries which has ever blessed the human race, the discovery of the means of preventing small-pox. On May 14, 1796, Dr. Edward Jenner inoculated James Phipps. When we remember that two million persons died in a single year in the Russian Empire from small-pox; that in 1707 in Iceland, out of a population of thirty thousand, sixty per cent., or eighteen thousand, died; that in Jenner’s time “an adult person who had not had small-pox was scarcely met with or heard of in the United Kingdom, and that owing to his discovery small-pox is now one of the rarest diseases,” the strong words I have used seem fully justified. But the eighteenth century was not to witness the end of progress in medicine. The advances in the nineteenth century have been even more startling and more beneficent. What these advances have been in the department of medicine has been related by Professor Osler. It is my province to speak only of surgery.

METHOD OF TEACHING

The first advance which should be mentioned is a fundamental one—namely, methods of medical teaching. At the beginning of the nineteenth century there were only three medical schools in the United States: the Medical Department of the University of Pennsylvania, established in 1765; the Medical Department of Harvard, established in 1783; and the Medical Department of Dartmouth, established in 1797. The last report of the Commissioner of Education gives a list of one hundred and fifty-five medical schools now in existence in this country, many of them still poorly equipped and struggling for existence, but a large number of them standing in the first rank, with excellent modern equipment, both in teachers, laboratories, hospitals, and other facilities. The medical curriculum then extended over only two years or less, and consisted of courses of lectures at the most by seven professors who, year after year, read the same course of lectures, without illustrations and with no practical teaching. The medical schools, even when connected with universities, were practically private corporations, the members of which took all the fees, spent what money they were compelled to spend in the maintenance of what we now should call the semblance of an education, and divided the profits. Until within about twenty years this method prevailed in all our medical schools. But the last two decades of the century have seen a remarkable awakening of the medical profession to the need of a broader and more liberal education, and that, as a prerequisite, the medical schools should be on the same basis as the department of arts in every well-regulated college. To accomplish this the boards of trustees have taken possession of the fees of students, have placed the faculties upon salaries, and have used such portion of the incomes of the institutions as was needed for a constant and yet rapid development along the most liberal lines.

COLLEGE HOSPITALS

The first step has been the establishment in connection with most schools of general hospitals in which the various teachers in the college should be the clinical instructors, and where the students would have the means not only of hearing theoretically what should be done to the sick, but of actually examining the patients under the supervision of their instructors, studying the cases so as to become skilled in reaching a diagnosis and indicating what in their opinion was necessary in the way either of hygiene, medicine, or surgical operation. More than that, in most of the advanced schools to-day the students assist the clinical faculties of the hospitals in the actual performance of operations, so that when they graduate they are skilled to a degree utterly unknown twenty years ago.

ESTABLISHMENT OF LABORATORIES

Another step which was equally important, and in some respects even more so, has been the establishment of laboratories connected with each branch of instruction. A laboratory of anatomy (the dissecting room) every medical school has always had, but all the other laboratories are recent additions. Among these may be named a laboratory of clinical medicine, a laboratory of therapeutics, in which the action of drugs is studied; a laboratory of chemistry, a laboratory of microscopy, a laboratory of pathology for the study of diseased tissues, a laboratory of embryology for the study of the development of the human body and of the embryos of animals, a laboratory of hygiene, a laboratory of bacteriology, a laboratory of pharmacy, a surgical laboratory, in which all the operations of surgery are done on the cadaver by each student, a laboratory of physiology, and in many colleges private rooms in which advanced work may be done for the discovery of new truths.

In all these laboratories, instead of simply hearing about the experiments and observations, each student is required to handle the drugs, the chemicals, the apparatus, to do all the operations, to look through the microscope, etc.; in other words, to do all that which is necessary for the proper understanding of the case in hand. In fact, it may be said that in view of the opportunities and the requirements of modern hospitals, it is undoubtedly true that a hospital patient, the poorest of the poor, often has his case more thoroughly studied and more accurately observed than the wealthy patient who is attended at his home. On the other hand, however, so many laboratories with their expensive apparatus and a large staff of assistants mean an enormous increase in the expense of a medical education, for which the student does not pay anything like an equivalent. Hence the need in all of our best modern medical schools for endowments, in order that such work may be carried on properly, and yet the student not be charged such fees as to be practically prohibitory, excepting for the rich, or at the least the well-to-do. I do not hesitate to say that at the end of the second year many a diligent student of to-day is better fitted to practise medicine than was the graduate of half a century ago.

ANATOMICAL MATERIAL

One of the most important means of the study of medicine, and especially of surgery, is a thorough acquaintance with the anatomy of the human body. No one would think of placing an engineer in charge of a complicated piece of machinery, who had never become intimately acquainted with all the parts of such a machine, so that he could take it to pieces and put it together again with ease and intelligence. Yet, until comparatively recently, this knowledge of anatomy was both required of, and yet at the same time the means of obtaining it was forbidden to, the medical student. If he performed an operation and was guilty of negligence or error, due to his want of anatomical knowledge, he was liable to a suit for malpractice. Yet his only means of becoming acquainted with the anatomy of the human body was by stealing the bodies of the dead. In England, up to 1832, this was equally true. A regular traffic in human bodies existed there as well as here, and, by reason of its perils, the cost of bodies for dissection was very great; but it was only a question of money. In his testimony before the Parliamentary Committee, Sir Astley Cooper made a shiver run down the backs of the noble lords who listened to him when he said that in order to dissect the body of any of them it was only necessary for him to pay enough. The large pecuniary profits of such business, when the supply was very small, led to the horrible atrocities of Burke and Hare in Edinburgh in 1832. They deliberately murdered a considerable number of persons, and sold the bodies to the dissecting rooms in that city. The discovery of their crimes finally led to the passage of the Anatomy Act, which has been in force in Great Britain ever since. Similar violations of graveyards in this country have led to the passage in various States of somewhat similar laws, usually giving for dissection the bodies of those who were so poor in friendship that no one would spend the money necessary for their burial. Even to-day, in a large number of our States, the former anomalous condition of affairs exists. The increase of anatomical material which has resulted from the enactment of wise and salutary laws for this purpose has given a great impetus to the study of anatomy, and has produced a far better educated class of physicians in most parts of the United States within the last few years. The enlightened sense of the community has perceived that to deny the medical schools the means of properly teaching anatomy was a fatal mistake, and resulted in an ignorance of which the community were the victims. As a result, it is possible now, by law, in most States to obtain a reasonable number of cadavers, not only for the study of anatomy, but for the performance of all the usual operations.

MEDICAL LIBRARIES

Along with this there has been throughout this country a marked movement in favor of medical libraries. It is to the credit of the government of the United States that the whole world is debtor to us, not only for the foremost medical library in the world, that of the surgeon-general of the army in Washington, but also for the magnificent index-catalogue, not only of the books, but all the journal articles in every language in the world. No better investment of money was ever made than the establishment of this library, and its allied museum, and the publication of the index-catalogue.

EMBRYOLOGY

As a result of all these means and methods of study, and as a part of the great educational and scientific movement of the century, medical men now take a wholly different view of the normal and abnormal structures of the human body. The study of embryology has shown us that many of the deviations from the normal development of the human body are easily explained by embryology. One of the most important changes in our idea, for example, of tumors is due to the fact that the study of embryology and of the tissues of the embryo have shown us that diseased structures, which lack explanation entirely, when compared with the adult human tissues, readily find their explanation and fall into an unexpected order when compared with the tissues of the embryo. Not only, however, has the study of embryological tissues thrown a flood of light on diseased structures, but we have obtained new views of the relation of man to all creatures, lower in the scale of life. Largely owing to the doctrine of evolution, we now recognize the fact that, so far as his body is concerned, man is kindred to the brutes; that his diseases, within certain limitations, are identical with similar diseases of the lower animals; that his anatomy and physiology are, in essence, the same as the anatomy and physiology of the lower animals, even the very lowest, and that many of his diseases can be best studied in the lower animals, because upon them we can make exact experiments which would be impossible in man. While it is true that each animal has disorders which are peculiar to itself, and that it is not subject to some of the disorders to which man is a victim, and, per contra, that man is a victim to some disorders from which animals do not suffer, yet, taking them as a whole, the diseases of man and of animals, and the action of remedies on both, are practically identical. To this I shall have occasion to refer again.

PATHOLOGY

Among the laboratories which I mentioned, one of the most important is that of pathology and morbid anatomy, or the study of diseased tissues and organs. The first work on pathology written in this country was by one of our best-known surgeons, the late Samuel D. Gross, and one of his most important contributions to surgical progress consisted in his persistent advocacy of the need for the study of pathology as a basis for all our means of cure. This is evident, if we consider the illustration I used a moment ago of a steam-engine. Unless he knows precisely the defects of such a machine, the influence of fresh or salt water on a boiler, the influence of rust, the effect of oils, entirely apart from the mere mechanism of the engine, an engineer might make the most serious mistake, resulting in fatal damage, both to the machine and probably to life. So, surgical pathology is the study of the processes of disease, the alterations in the minute structure of tissues and organs, without which no surgeon can be fitted for his task, much less can he be called an accomplished surgeon. All of these laboratories mark the difference between the scientific and the empirical method. The old student of medicine went from case to case, heard many a good maxim, and learned many a useful trick; but, after all, it was only an empirical knowledge which he obtained. It did not go to the foundation of things, it was not scientific, as is the collegiate instruction of to-day.

Having now glanced rapidly at the improvement in medical instruction, let me turn next to a few of the principal discoveries which have made the surgery of to-day so much superior to the surgery of a hundred years ago.

ANÆSTHESIA

After vaccination, the most important medical event of the century is the discovery of anÆsthesia. While there were some prior attempts at anÆsthesia, practically it dates from October 16, 1846, when Dr. John C. Warren, in the Massachusetts General Hospital, first performed a major surgical operation, without inflicting the slightest pain. I cannot enter into the merits of the various claimants for the credit of first using an anÆsthetic, but ether was then for the first time publicly administered by Morton, and the very sponge which was then used is now a precious trophy of the Massachusetts General Hospital. I may, perhaps, quote from an address which I delivered before the Medical and Chirurgical Faculty of the State of Maryland, at their centennial anniversary, in April, 1899, the following in relation to anÆsthesia:

“The news went like wildfire, and anÆsthesia was soon introduced into every clinic and at almost every operation throughout the civilized world. Prior to that time a surgical operation was attended with horrors which those who live in these days cannot appreciate. He was the best surgeon who could perform any operation in the least possible time. The whole object of new methods of operating was to shorten the period of frightful agony which every patient had to endure. Every second of suffering saved was an incalculable boon. To submit to any operation required then a heroism and an endurance which is almost incomprehensible to us now. All of the more modern, deliberate, careful, painstaking operations, involving minute dissection, amid nerves and blood-vessels, when life or death depends on the accuracy of almost every touch of the knife, were absolutely impossible. It was beyond human endurance quietly to submit one’s self for an hour, for an hour and a half, for two hours, or even longer, to such physical agony.

“It is a striking commentary on the immediate results of anÆsthesia to learn that, in five years before the introduction of ether, only one hundred and eighty-four persons were willing to submit themselves to such a dreadful ordeal in the Massachusetts General Hospital—an average of thirty-seven operations per annum, or three per month.... During the last year, in the same hospital—a Mecca for every surgeon the world over—over thirty-seven hundred operations were performed. It is not an uncommon thing at the present day for any one of the more active surgeons of this country to do as many as four or five hundred operations in a year. I have known as many as nineteen operations to be done in the Jefferson Medical College Hospital in a single day—equalling six months’ work in Boston before the introduction of ether.”

The next year, 1847, witnessed the introduction of chloroform by Sir James Y. Simpson, of Edinburgh. Until I became acquainted with the striking figures just quoted, I had often wondered at the hospital scene in that most touching story, Rab and His Friends, by the late gifted and well-beloved physician, Dr. John Brown, of Edinburgh. Nowadays students do not rush into the surgical amphitheatre when they learn that an operation is to be done, but it is taken as a matter of course, for practically every day many operations are done in most of our large hospitals. But, at the time when Rab’s mistress was operated upon, an operation, as has been stated, was a very rare event. Few had the fortitude to endure its dreadful pangs. Now, thanks to the blessed sleep of anÆsthesia, sufferers from even the most dreadful disorders can have long and difficult operations done, accurate and tedious dissections made, and yet feel not a twinge of pain.

Besides general anÆsthesia by ether, chloroform, and a few other agents, there have been introduced several means for producing “local anÆsthesia,” i.e., agents which destroy the sensibility of the part of the body to be operated upon while not producing unconsciousness. Freezing the part by ice and salt, or by a quickly evaporating spray of rhigolene or chloride of ethyl, are sometimes used. But cocaine and a somewhat similar substance, eucaine, have of late been more extensively used on man, after their harmlessness had been first shown by experiments on animals. In 1885 Corning, of New York, injected a solution of cocaine as near to the spinal cord as was possible, and produced insensibility of all the body below the point of injection by the effect of the cocaine upon the spinal cord. A few years ago Quincke, of Kiel, in Germany, devised a means of puncturing the spinal canal itself in the lumbar region (the lowest part of the small of the back) for the purpose of drawing off some of the fluid for examination. This suggested to Bier, then of Kiel, who was apparently ignorant of Corning’s work, that cocaine could be injected through a hollow needle inserted into the spinal canal by “lumbar puncture” and so produce anÆsthesia of all the body below this point. This method was published by him in 1899, and was soon repeated in America. In France, however, it has been practised more than elsewhere, Tupper, of Paris, having successfully done over two hundred operations by “spinal anÆsthesia.” All of the body below the diaphragm can thus be deprived of sensibility. The method will probably never replace ether and chloroform, but in many cases is a valuable aid to the surgeon. But it has its dangers and its inconveniences. The ideal anÆsthetic is not that which destroys sensibility and yet leaves the patient perfectly conscious, as spinal anÆsthesia does. A patient to whom I recently proposed it for certain special reasons rejected it, saying, with probable truth, that she could never bear the strain of lying on the table perfectly conscious of all that was being done and frightened by any surgical emergency which might easily arise in such a long, difficult, and dangerous operation. The ideal anÆsthetic is that which will abolish pain and consciousness without danger to life. The twentieth century will undoubtedly see the discovery of this safe and efficient anÆsthetic.

ANTISEPSIS

But the limits of surgical progress were not yet reached. Let me quote again from the address before alluded to:

“Even the introduction of anÆsthesia, however, did not rid surgery of all its terrors. The acute pain of the operation was abolished, but the after-suffering, as I know only too well, in my early surgical days, was something dreadful to see. The parched lips of the poor sufferer, tossing uneasily during sleepless nights; wounds reeking with pus, and patients dying by scores from blood-poisoning, from erysipelas, from tetanus, from gangrene, were only too familiar sights in the pre-antiseptic days. Then, again, there arose one of these deliverers of the human race whose name can never be forgotten and whose fame will last so long as time shall endure. Jenner, Warren, and Lister are a triumvirate of names of which any profession may well be proud. Thank God, they all sprang from virile Anglo-Saxon loins! No praise, no reward, no fame is too great for them. That Lord Lister still lives to see the triumph of his marvellous services to humanity is a joy to all of us. And when the profession arose en masse, within the last few years, at the International Congress of Berlin, and at the meeting of the British Medical Association in Montreal, and welcomed him with cheer after cheer, it was but a feeble expression of gratitude for benefits which no words can express.

“Before Lister’s day erysipelas, tetanus, gangrene, and blood-poisoning in its various phases were the constant attendant of every surgeon. They were dreaded guests at almost any operation; and when in rare cases we obtained primary union without a drop of pus, without fever, and with but little suffering, it was a marvellous achievement. Now it is precisely reversed. The surgeon who does not get primary union without a drop of pus, with no fever, and with little suffering, asks himself—what was the fault in my technic? To open the head, the abdomen, or the chest thirty years ago was almost equivalent to signing the death-warrant of a patient. The early mortality of ovariotomy was about sixty per cent.; two out of three died. Now many a surgeon can point to a series of one hundred abdominal operations with a fatality of only two or three per cent. When Sir Spencer Wells recorded his first one thousand cases of ovariotomy it was calculated that after deducting the years which the patients who died from the operation would have lived had no operation been done the net result of the thousand cases was an addition of twenty thousand years to human life. One thousand ovariotomies under antiseptic precautions at the present would certainly add at least thirty thousand years to human life. Would not such a guerdon be enough for any man?

“This, too, is a direct result of laborious laboratory researches, beginning with the investigations of Liebig and Pasteur on fermentation. Lister went still further. Even before the discovery of the bacteria of suppuration, of tetanus, and of erysipelas he showed us experimentally how, by surgical cleanliness, we could avoid all infection and so banish these pests from our hospitals and bring life and health to many who otherwise would have perished from operations which are now perfectly safe.

“The mortality of compound fractures in the pre-antiseptic days was about sixty per cent. It was one of the most dreaded of all accidents. Its mortality now is perhaps not over three per cent., and the mortality from sepsis after such a fracture, in the hands of well-instructed surgeons, is almost nil. Prior to Lister’s day the mortality of major amputations varied from fifty to sixty-three per cent. Now it is from ten to twenty per cent. And so I might go on with operation after operation and show how they have become so safe that one need not dread any, saving exceptional cases.

“These two modern discoveries, anÆsthesia and antisepsis, have utterly revolutionized modern surgery. They have made possible operations which, by reason of their length and pain and danger, were utterly unjustifiable in former days, but are now the daily occupation of a busy surgeon. And, far better than this, they have enabled us to bring to homes and hearts, which otherwise would have been broken up and wrung with sorrow, the comfort of life restored to dear ones upon whom depended the happiness and support of the families. Translate figures into happy hearts and prosperous homes if you can, and then you can tell me what Warren and Lister have done for humanity!”

The result of these two wonderful discoveries has been to separate us from the surgical past, as by a great gulf.

“Great theologians, such as a Calvin or a Jonathan Edwards, were they recalled to life, could discourse as learnedly as ever of predestination and free will; great preachers, as a Beecher or a Spurgeon, could stir our souls and warm our hearts as of old; great jurists, as a Justinian or a Marshall, could expound the same principles of law which hold good for all time; great forensic orators, as a Burke or a Webster, could convince us by the same arguments and arouse us by the same invectives or the same eloquence that made our fathers willing captives to their silver tongues. But to-day, so rapid has been our surgical progress, a Velpeau, a Sir William Ferguson, or a Pancoast, all of whom have died within the last thirty years, could not teach modern surgical principles nor perform a modern surgical operation. Even our every-day surgical vocabulary—staphylococcus, streptococcus, infection, immunity, antisepsis and asepsis, toxin and antitoxin—would be unintelligible jargon to him; and our modern operations on the brain, the chest, the abdomen, and the pelvis would make him wonder whether we had not lost our senses, until, seeing the almost uniform and almost painless recoveries, he would thank God for the magnificent progress of the last half-century, which had vouchsafed such magical, nay, such almost divine, power to the modern surgeon.”

THE SURGERY OF WAR

One of the immediate consequences of the introduction of the antiseptic method has been a remarkable mitigation of the horrors of war. Our recent war with Spain has proved, and the present military operations in the Philippines and of the British in South Africa will still further prove, its advantages. Witness a little book written by Professor von Esmarch, of Kiel, Germany, with the apt title, The Fight of Humanity Against the Horrors of War; with an appendix, entitled, “The Samaritan on the Battle-field.” One of the most valuable means for the preservation of human life is carried by every soldier in a modern civilized army as a part of his regulation outfit, a “First Aid Package” for the treatment of any wound or injury; and one of the most valuable and interesting papers read before the American Surgical Association, at its meeting in Chicago in 1899, was by Professor Senn on the “First Aid Package.” This first aid package contains an antiseptic dressing, which can be applied to all but the gravest wounds for the purpose of preventing infection, which is the principal danger to life after accident or injury. The universal testimony of our surgeons in Cuba was that by its use most wounds were prevented from becoming infected, and, therefore, inflamed, and that the number of operations was greatly diminished by reason of its use.

BACTERIOLOGY

In experimental science, two methods of progress are observed; first, in actual practice certain methods are adopted because they are found to be the most advantageous and useful, though we cannot explain why it is so—i.e., practice outstrips theory. Again, as a result of experimental investigation, certain facts are discovered which explain why the practical methods just alluded to are the best, and this in turn suggests further improvements in our practice—i.e., theory outstrips practice and enlarges its domain. Thus outstripping theory, the practical advance made by Lister was an example of the first. His striking results in turn stimulated scientific observers to make new discoveries of the greatest importance, and thus science immensely improved and widened our practical methods.

No definite year or day can be assigned as the birth-date of Lord Lister’s antiseptic methods, as we can, for instance, for vaccination or for anÆsthesia. We may assume, at least for this counrty, the summer of 1876 as the starting-point. During that year Lord Lister attended the International Medical Congress held in Philadelphia, and demonstrated his then methods and convinced a few surgeons of their immense advantages. Even before that date there had been very many experiments and observations, especially on the blood. In 1863 Davaine, in France, had discovered little rod-like bodies in the blood in wool-sorters’ disease, or anthrax, which he named from their shape “bacteria,” or “little rods.” This name has been adopted for all forms of germs, though many of them are not rod-like in their shape. Not until 1881 was the cause of inflammation and suppuration (the formation of pus or “matter”) discovered. In that year Ogston, of Aberdeen, published experiments which he believed demonstrated the fact that certain bacteria were the cause of suppuration. Since then this has been amply confirmed not only by experiments upon animals, but by observation in man. In 1882 Robert Koch, of Berlin, discovered the cause of tuberculosis, a little rod-like body, which is named the “bacillus” of tuberculosis. In 1883 Fehleisen discovered the germ of erysipelas, and in 1887 Nicolaier and Rosenbaum discovered the bacillus of tetanus or lockjaw. So recent have been the discoveries in bacteriology which have led to vast improvements in our methods of treatment of wounds and the performance of operations.

While the principles established by Lord Lister have remained unchanged, the details in the treatment have been greatly simplified and made more efficient. For the information of the general reader, let me state a few facts. Bacteria are divided into two principal classes, in accordance with their form. One, known as “cocci,” from the Greek word coccus—“berry”—may be likened to billiard-balls. Some of these occur in bunches, which have been likened to bunches of grapes, and hence are called, again from a Greek term, “staphylococci.” Others are arranged in chains, like beads, and are called “streptococci.” These last are very much more virulent and dangerous than the staphylococci. Both of these produce pus or matter, and they are the most widely diffused and most common forms found in infected or suppurating wounds. One form is the cause of erysipelas. A second form, known as “bacilli,” may be likened to a lead-pencil. Among the various bacilli that have been discovered are those of tuberculosis, glanders, tetanus or lockjaw, etc. I omit many others found in medical disorders, as they do not concern this paper. How important these discoveries are may be seen by the following facts: Tuberculosis, next to that of suppuration, is, perhaps, the most widely extended infection to which man, as well as animals, is liable. We are all familiar with it in the form of “consumption,” but the non-medical reader is, perhaps, not aware of the fact that it affects not only the lungs, but also the bowels in consumption of the bowels; the bones, as is seen by every surgeon almost daily, and especially as the cause of the crooked backs seen in spine diseases; in the joints, as is seen in hip-joint disease, white swelling of the knee, ankle-joint disease, and similar disease of all the other large joints of the body; in the brain, in tubercular meningitis; in the abdominal cavity, in tubercular peritonitis; in the skin, in certain forms of ulceration, commonly called lupus; in the glands, as in the swollen glands, or “bunches,” in the neck, and endless other varieties which I need not name.

The bacillus of lockjaw is found in great abundance around stables, and this explains the fact that hostlers, drivers, cavalrymen, all of whom had to do with horses, are especially liable to attacks of lockjaw. Moreover, certain bacteria thrive best when exposed to the open air. Other bacteria, and among them the bacilli of lockjaw, thrive best when the air is excluded, and this explains the danger of treading on a rusty nail, which is popularly and rightly known as peculiarly liable to produce lockjaw. The reason is not because it is a nail, nor because it is old, nor because it is rusty, but because from the earth in which it lies it is most apt to be the means of introducing into a punctured wound the bacilli of lockjaw. Such a wound bleeds but very little, the blood soon crusts and excludes the air, and if any of the bacilli of lockjaw have been carried into the body, they find in such a closed wound, from which the air is excluded, the most favorable conditions for growth and infection of the whole body. Knowing these facts from experiment, the treatment is clear. Lay open such a wound and disinfect it. These two forms, the “cocci,” or berry-like bacteria, and the “bacilli,” or rod-like bacteria, comprise the great majority of dangerous bacteria.

It must be remembered that there is an enormous number of bacteria which are not dangerous; some of them are entirely harmless even if introduced into the human body. Others are the bacteria of decomposition, or putrefaction, which are known as “saprophytic” bacteria. All of the harmless ones are known as “non-pathogenic,” that is, non-producers of disease. Those which produce disease are known as “pathogenic,” and those which produce suppuration as “pyogenic” or pus-producing bacteria.

All of these bacteria are plants, and not, as is very frequently supposed, animals of a low form. The danger from their introduction into the body can be best appreciated, perhaps, by the statement of Belfield, who estimated that a single bacterium which weighs, approximately, only the 1-40,000,000 part of a grain, if given plenty of food and plenty of “elbow room,” would so rapidly develop that in three days it would form a mass weighing 800 tons! It is the old story of the blacksmith who was to get a penny for the first nail, two for the second, four for the third, and so on till a set of shoes would cost more than Croesus could pay for.

The effect of the bacteria has been determined by experiment to be proportionate to the dose. A cubic centimetre is a cube two-fifths of an inch on each side. One-tenth of such a cube of pure culture of one bacterium (Proteus vulgaris) contains 225,000,000 bacteria, and if injected under the skin of a rabbit will produce death. Less than 18,000,000 will produce no effect whatever. Of one kind of staphylococcus, if 250,000,000 are introduced under the skin of a rabbit there will be produced a small abscess, but it requires 1,000,000,000 to produce speedy death. On the other hand, of the bacillus of lockjaw it requires only 1000 to produce death, so virulent is this germ.

Moreover, their effect on tissues and persons in different states varies very much. Thus, it is found that when a certain number of bacteria are injected into the cavity of the abdomen of an animal, if the animal is healthy and the peritoneum (the thin lining membrane of the abdomen) is healthy, the animal will recover perfectly well; but if the peritoneum be scraped and torn (and it must be remembered that the healthy peritoneum is devoid of sensation), that the same dose which before was harmless will now produce a violent peritonitis and very likely death. The practical lesson from this experiment upon animals is very evident. Every surgeon who opens the abdomen is most careful, if possible, not to injure the peritoneum, but manipulates with the greatest care lest fatal results follow any serious injury to that membrane. So, too, if the general health be impaired, it is found that an injection from which a healthy animal would recover will be followed by fatal consequences if the general health is below par. Again, if an animal has a simple fracture of his thigh-bone, and that is the only injury that he receives, no infection from the exterior having occurred, he will make a good recovery; but if at the same time he receives a lacerated wound, it may be even in another part of the body, and this wound, not being cared for most scrupulously, becomes infected, the infection will fasten on the distant spot of least resistance, the broken thigh-bone, and will produce a most dangerous and very frequently fatal form of inflammation.

I need scarcely point out in this connection, as in fact throughout this entire consideration of bacteriology, how important a part in its development has been played by experiment upon animals. The experimental facts just stated are of vital importance in the treatment of surgical diseases, and evidently could not have been determined upon mankind. It is not too much to say that had vivisection been restricted or prohibited the surgery of to-day would be the barbarous surgery of thirty years ago.

Even granting that an enormous number of the bacteria are harmless, the wonder is that with so many foes on every hand we live an ordinary lifetime. Fortunately, however, in the human body there is not only a lack of food sufficient and “elbow room” enough for them to work their dire effects, but there is that which “makes for righteousness” in our physical organization as well as in our souls.

The moment that bacteria are introduced into the human body a certain number of cells hasten to destroy them. These are called “phagocytes” or devouring cells, because they eat up the bacteria. Whether the patient survives or dies depends on whether the bacteria get the upper hand of the phagocytes or the phagocytes the upper hand of the bacteria.

These statements are very easy to make, but the results have only been obtained by prolonged and laborious investigations in the laboratory and by experiments upon animals which have demonstrated these facts.

The bacteria are recognized by various methods: First, by form. Many which are identical in appearance, however, differ greatly in effects. A handful of turnip-seed and a handful of rape-seed look very much alike, but if they are planted the plants differ so greatly that we can recognize the difference in the seed by the difference in the crop; hence the second method of recognizing differences in bacteria is by planting them. Different methods have been practised. Some are sown on the raw surface of a potato; others on bread paste; others in certain jelly-like materials, such as gelatine or agar-agar. It was soon found as a result of these experiments that the bacteria flourished best, some in one soil, some in another. Again, the crops of mould which come from them differ greatly in color, some being black, some red, some white, some yellow, etc. A third method also is by staining them with various dyes, when it is found that some bacteria will take one stain best, others will take another, and so on through the whole list.

At first it was thought that these bacteria existed chiefly in the air, and hence in Lister’s early methods powerful spray-producing apparatus were used; but while it is true that they do exist in the air, it is found that this is not the principal source of infection. There is no substance (which has not been disinfected) that is not covered with the germs of these little plants. They exist in our food and drink; but the intestine is, one may say, a natural home in which many exist without harm to the body. For surgical purposes their existence is most important, first, in the earth, where, as I have already shown, the bacillus of lockjaw is most frequently found. So, too, the bacillus of wool-sorters’ disease (Anthrax) exists in the earth. If an animal dying of anthrax is buried, worms coming from the carcass up through the ground carry the infection, so that other animals grazing over this surface will become readily infected. The means by which we can avoid infection from the earth is very evident, viz., every person who has been run over by the cars or who has fallen on the ground and broken his leg, etc., must have the wound most carefully cleansed from all dirt. If this is scrupulously done the danger of tetanus or other similar earth-born bacterial disease is almost nothing.

A still greater danger to every patient, however, is found in the clothing, in the skin, and all dressings which are applied to wounds. The skin is full of bacteria of the most dangerous kind; even the spotless hands of the bride, in the eyes of the surgeon, are dirty. No one can touch a wound with ordinarily clean hands without infecting it. All clothing, dressings—e.g., lint and soft linen rags, and such like—are full of bacteria of the most dangerous kind. Perhaps the most dangerous place is the space under the nails of the surgeon’s hand, for the mere mechanical removal of any dirt under the nails by cleansing them does not make them clean surgically. The nails must be cut short and prepared in a way I shall mention directly, or they are full of peril to any patient into whose wound a non-disinfected finger is introduced. Again, another source of infection which thirty years ago we never thought of is our instruments. Then instruments were washed with soap and water and were made clean to the eye, but they were still covered with invisible death-dealing bacteria which hid especially in the joints and irregularities of the surface of all instruments.

All of these somewhat detailed statements lead up to a consideration of the difference between the old surgery and the new. Thirty years ago when an operation was to be performed or an accident cared for we laid out our instruments which were visibly clean, used them with hands which were as clean as those of any gentleman, and applied soft linen rags, lint, and other dressings. To-day we know that these apparently clean instruments, hands, and dressings are covered with bacteria, which produce infection, and, therefore, suppuration, and frequently run riot in blood-poisoning, erysipelas, lockjaw, and death.

How does a modern surgeon perform an operation? All bacteria can be killed by heat. Cold has no effect upon them, but the temperature of boiling water (212° Fahr.) is sufficient to destroy them all usually within fifteen or twenty minutes; hence, first, instruments are all boiled; and, secondly, dressings are either steeped in such solutions as have been found to destroy the bacteria, such as carbolic acid or corrosive sublimate, or other preparations, or, still better, are placed in sterilizers, that is to say, metal cylinders, which are then filled with steam, usually under pressure, so as to obtain a temperature of 240° Fahr., and thus make sure of the death of the bacteria. Unfortunately, our hands cannot be boiled or steamed, but the modern surgeon first uses soap and water most vigorously over his hands and arms up to the elbow. The nails are cut short and the scrubbing-brush is especially applied to the nails so as to clean the fingers at the ends. Then by various means, such as pure alcohol, which is one of our best disinfectants, or solutions of corrosive sublimate, and other means too technical to mention, the hands are sterilized. Rubber gloves are frequently used, so as to preclude infection, as they can be steamed to 240° Fahr. Removing at least his outer clothing, the surgeon puts on a cotton gown which has been steamed and so made free from bacteria. Not a few surgeons also wear sterilized caps, so that any bacteria in the hair will not be sifted into a wound, and some wear respirators of sterile gauze over the mouth and beard for the same reason. All the dressings have been sterilized by superheated steam. All the threads by which blood-vessels are tied have been either boiled or otherwise sterilized. All the material for sewing up the wounds, and the needles with which they are sewn, have been similarly disinfected. The skin of the patient is also sterilized, usually the day beforehand, in the same manner in which the surgeon’s hands have been disinfected, and are disinfected a second time just at the moment of the operation. If the case is one of accident, such as a crushed leg from a trolley-car, all of the dirt is most carefully washed away with soap and water, and the parts are disinfected, not only on the exterior, but also by prolonged washing with some cleansing agent in the interior of the wound, the patient being under the influence of ether, of course.

It is easily seen from such a description of a modern operation that no case can receive due care in one of our modern homes, even the best. The facilities do not exist, and hence surgeons are more and more declining to do operations, whether for accident or disease, in private houses, except in a case of absolute necessity, and a happy custom is growing more and more in favor with the community of having all operations and all accidents cared for in a well-equipped hospital.

RESULTS OF MODERN SURGERY

As the result of our ability to perform operations without pain, thanks to anÆsthesia, and our ability to perform operations without infection, and, therefore, almost without danger, thanks to antisepsis, the range of modern surgery has been enormously increased. Unless one has lived through the old surgery and into the new he scarcely can appreciate this widening of the field of operative surgery. Thirty years ago, in consequence of the great danger of opening the head, the chest, or the abdomen, or, in fact, of making an incision anywhere about the body, the surgeon never dared to interfere until he was obliged to do so. Hence, not only were many modern operations not even thought of, but in obscure cases we had to wait until time and disease developed symptoms and physical signs such that we were sure of our diagnosis, and then, knowing that death would follow if we did not interfere, we ventured to operate. Now we anticipate such a fatal termination, and in most cases can avert it. In perhaps no class of cases has the benefit of this immunity from infection and danger been shown than in the obscure diseases of the brain and the abdomen. To-day, if we are uncertain as to whether there is serious danger going on which, if unchecked, will result in death, we deliberately open the one cavity or the other, in order to find out the exact state of affairs. Supposing that the mischief is trifling, or even that there is no mischief, we then know how to deal with the symptoms which have been puzzling us. So far as the exploratory operation is concerned, the patient recovers from it in a short time, and, meantime, perhaps has also been cured of the symptoms which were before so ill understood. If any serious disease is found, in the majority of cases we can cope with it successfully. Before the days of antisepsis and anÆsthesia the field of operation was greatly restricted, and practically the removal of tumors, amputations, and a few other operations were all that were done. Now all the then inaccessible organs are attacked with an intrepidity born of an assurance of safety. Recovery usually sets the seal of approval on the judgment of the surgeon. Thirty years ago, taking all operations together, fully one-third of our patients died, many of them often from slight operations which were followed by infection. To-day, including even the far more grave operations which are now done, the general mortality will scarcely exceed five per cent., and many surgeons are able, in a series of several hundred operations, to save ninety-seven out of every hundred patients!

SERUM TREATMENT

Another remarkable recent discovery, the result of numerous and careful investigations in the laboratory, is a wholly new means of treatment, viz., that method which is known as orrhotherapy, or serumtherapy, or the treatment by injecting certain antitoxins under the skin by a hypodermatic syringe. It would lead me too far to enter into the theory upon which these were first used. Suffice it to say that in the blood of an animal that has passed through a certain disorder the liquid part of the blood contains an antidote or antitoxin. If a certain amount of this is injected under the skin of an animal or man suffering from the same disorder in its incipient stages, the antitoxin prevents the development of the disease. The use of this method has thus far been much more medical than surgical, and its results in diphtheria and other medical disorders have been perfectly marvellous. In surgery, however, less favorable results have been obtained, but in all probability in the future we shall be able to do for some of our surgical disorders what the physician can do to-day for diphtheria. [For the results in diphtheria, see Professor Osler’s paper.]

There has also been discovered another means which in surgery has rendered some valuable service. From certain organs, as, for instance, the thyroid gland (the gland whose enlargement produces goitre), we can obtain a very potent extract of great value. In cases of goitre very noteworthy results have already been obtained by the administration of the thyroid extract. A number of other organs in the body of animals have been used to combat certain disorders in the human body with advantage. The chief development of both of these new forms of medication, however, will take place in the twentieth century.

INSTRUMENTS OF PRECISION

Another direction in which the century has seen enormous progress is in the introduction of instruments of precision. When I was a student in the early 60’s, instruction in microscopy was conspicuous only by its absence from our medical curriculum. Now every student who graduates is more or less of an accomplished microscopist, and carries into his practice the methods and observations which the microscope furnishes. At the same period I remember being greatly interested in a discussion which two of my teachers had as to whether it was possible to make an application accurately to the vocal chords in the larynx. Now every tyro in medicine makes such applications to the larynx as a routine procedure in cases requiring it, and similar methods have been applied by the ophthalmoscope to examine the interior of the eye; the rhinoscope, to examine the interior of the nose; the otoscope, for examination of the ear; and other similar instruments for examining all the other hollow organs in the body. If I add to these the hypodermatic syringe; the aspirator, which may be described as a large hypodermatic syringe for suction instead of injection; the clinical thermometer, which was introduced in the late 60’s; the hemostatic forceps, for controlling hemorrhage by seizing the blood-vessels and clamping them till we have time to tie them; and other instruments intended to facilitate our operative methods, it will be seen at once that the armamentarium of the modern surgeon is very different from that of his predecessor at the beginning, or even at the middle, of the century.

THE RÖNTGEN RAY

One of those extraordinary discoveries which startle the whole world came nearly at the end of the nineteenth century, in the winter of 1895–96. At that time a modest professor in the University of WÜrzburg announced that he could readily see the skeleton inside the body through the flesh! Naturally, the first announcement was received with almost absolute incredulity; but very soon his discovery was confirmed from all sides, and it has now taken its place among the recognized phenomena of science. By means of certain rays, which, being of unknown nature, were called “X”-rays, after the well-known mathematical X, or unknown quantity, Professor RÖntgen has shown us that not only can the bones be seen, but that almost every substance in the body can be seen and reproduced in pictures. The reason for this is because they are all obstacles to the passage of these X-rays and so produce shadows on a sensitized photographic plate. If the exposure is sufficiently prolonged the rays penetrate even through the bones and act upon the photographic plate, so that no shadow remains. If the rays are allowed to penetrate for a shorter time the bones show dense shadows, and one can get a light shadow of the soft parts. If the exposure is still shorter, then we can recognize the dense shadow of the bone, the much less dense shadows of the muscles, and the still lighter shadows of the layer of fat immediately under the skin. The heart can be seen beating, and its shadow is now a well-recognized feature in skiagraphs of the chest. At first it was thought impossible to discover anything inside the bony skull, but there are now on record nearly a score of instances in which bullets have been detected within the skull, and after trephining have been found and removed exactly at the location indicated. It is a very common thing now to locate a piece of steel or other similar foreign bodies within the eyeball by the method of Dr. Sweet, or some similar method, within one or two millimetres (a millimetre is one-twenty-fifth of an inch). It is now well recognized that even stones in the kidney will throw shadows sufficiently strong for them to be recognized, and by noting their level in relation to the vertebrÆ we can tell precisely in what part of the kidney to make the incision in order to find and remove them. It has happened to myself and many other surgeons in the past to cut down upon a kidney, believing that there was a stone in the kidney, only to find that we had been misled by the apparently clear symptoms of such a foreign body. In future no such mistake should be made by any surgeon within reach of a skilful skiagrapher. Unfortunately, gall stones and numerous other foreign bodies, vegetable substances such as beans, corn, wood, etc., being as transparent to the X-rays as are the soft parts, are not revealed by means of this new method of investigation; but cavities in the lung, abscesses in bone, and similar diseases which produce thinning of the lung, bone, and other such organs, and so lighten instead of deepen the shadows, can now be recognized by means of light spots in the pictures as well as others by means of a shadow.

I spoke a moment ago of the need of a “skilful” skiagrapher, for it must be remembered that there may be the same difference in the personal skill, and, therefore, in the reliability of the results in skiagraphy as there is in photography. A poor photographer will get very different results from a skilful one, even if he uses precisely the same quality of plates and precisely the same camera. Personal skill and experience in the skiagrapher is, therefore, one of the most important elements in success. It must be remembered also that the X-rays in not a few cases may mislead us. I have, personally, fractured a bone on account of deformity, taken an X-ray picture immediately after the operation, the picture showing not the slightest evidence of a fracture, which I absolutely knew existed. Moreover, foreign bodies found on the outside of the person may mislead us, as, for example, the metal part of suspenders, a coin in one’s pocket, and such like. They look in the picture as if they were inside rather than outside the body, and any article the shape or size of which would not reveal its nature might easily be mistaken for a foreign body within the patient. Therefore, in many cases only an expert can determine precisely what the skiagraph means. I especially mention this, because there is a tendency at present to utilize skiagraphs in court in order to convince the jury that such a picture is an evidence of malpractice. Such pictures always need an interpreter in order to judge correctly of their meaning. It is precisely as if the jury were asked to look through a microscope. I have been myself accustomed to use the microscope for thirty years, but there are many instances even yet in which I am obliged to ask a pathologist or bacteriologist what I really am looking at in the microscope. While one may make a mistake of small moment in some cases, yet if a man’s life or liberty or purse is at the mercy of a jury which does not know how to interpret a skiagraph, and, may, therefore, give a verdict which is “precisely wrong,” as Professor Lincoln, my old teacher of Latin, used to call many of our translations, it will be a very serious matter and lead to gross injustice.

CITY AND VILLAGE HOSPITALS

Another great improvement in our means of caring for our surgical patients is the establishment of hospitals all over the land. These, happily, are not limited to our great cities, but in every country town and not a few large villages small but well-equipped and well-managed hospitals have been established which have done incalculable good. It is not too much to say that every city or town establishing such a hospital is repaid a hundredfold.

TRAINED NURSES

The trained nurse has fortunately come to stay. In fact, our antiseptic methods as above described have made the trained nurse indispensable. The old nurse, who, by many clumsy experiments on her patients, had obtained a certain rule-of-thumb knowledge of the care of the sick, can no longer assist in a surgical operation or properly care for any surgical patient. The modern nurse must of necessity be a well-educated, well-trained woman, knowing thoroughly modern antiseptic methods, and on the alert to observe every symptom of improvement and every signal of danger.

Without a well-trained nurse it is impossible at the present day properly to care for any serious surgical case, and I gladly bear witness to the intelligence, fidelity, and skill of scores of nurses who have assisted me, and without whom I should have felt as one blade of a scissors without its fellow.

SPECIAL OPERATIONS

Amputations and Compound Fractures.—Having now traced the different modes of thought which have aided surgical progress in the nineteenth century and the improved means of investigation, let us turn finally to the progress in individual operations. As to amputations and compound fractures, I have already indicated the immense improvements which have followed the introduction of anÆsthesia, and especially of antisepsis, which have brought the mortality of amputations down from fifty or sixty per cent. to ten or fifteen per cent., and in compound fractures, once so dreaded, since the mortality was not infrequently as high as two out of three, to a relatively insignificant danger.

Tumors.—In no department, perhaps, has the introduction of antisepsis, and the use of catgut and silk ligatures after the antiseptic method, brought about a greater improvement than in operations for tumors. The startling reluctance of Sir Astley Cooper to operate on King George IV. for so simple and small a tumor as a wen, lest erysipelas might follow and even destroy his life, is in marked contrast with the success and therefore the boldness of modern surgeons. Tumors in all parts of the body, whether they be external or internal, whether they involve the wall of the chest or are inside the abdomen, are now removed with almost perfect safety. AnÆsthesia has made it possible to dissect out tumors in so dangerous a region as the neck, where the surgeon is confronted with adhesions to the jugular vein, the carotid artery, and the nerves of the neck and of the arm, with the greatest impunity. Such an operation not uncommonly lasts from three-quarters of an hour to an hour and a half, and involves often the removal of two or three inches of the jugular vein and many of the large nerves, the removal of which a few years ago would have been deemed an impossibility.

Goitre.—One of the most striking instances of progress is operations on goitre. Writing in 1876, the late Professor Samuel D. Gross noted it as something remarkable that Dr. Green, of Portland, Maine, had removed seven goitres with two deaths, and the late Dr. Maury, of Philadelphia, had extirpated two goitres with one death. In marked contrast to this Professor Kocher, of Berne, in 1895, reported one thousand cases, of which eight hundred and seventy were non-cancerous, and he lost of these last but eleven cases, or a little over one per cent. In 1898 he reported six hundred additional cases, with only one death in the five hundred and fifty-six non-cancerous cases, or a mortality of only 0.1 per cent. It will be seen, therefore, that an operation which a few years ago was excessively fatal has become almost, one might say, a perfectly safe operation.

Surgery of the Bones.—Operations on bones, apart from amputations, show also a similar improvement. In cases of deformity following fracture we now do not hesitate to cut down upon the bone and refracture it or remove the deformed portion, join the ends together, dress the part in plaster of Paris to secure fixation, and have the patient recover with little or no fever and no suppuration. Above the elbow a large nerve runs in a furrow in the arm bone, and in case of fracture this is liable to be torn and a portion of it destroyed. The result of it is paralysis of all the muscles on the back of the forearm from the elbow down and consequent inability to extend either wrist or fingers, making the hand almost useless. In a number of cases the nerve has been sought for and found, but the ends have been too far apart for successful union and sewing them together. In such cases we do not hesitate now, in order to bring the two ends of the nerve together, to remove one or two inches of the arm bone, wire the shortened bone, sew the now approximated ends of the nerve together, put the arm in plaster, and as soon as the wound is healed, with appropriate later treatment to the muscles we can obtain in a reasonable number of cases a perfect, or almost perfect, union of the nerves with a re-establishment of the usefulness of the hand.

In very many cases the bones are deformed as a result of rickets, and in some cases in consequence of hip-joint disease. In such cases the leg is crooked or flexed, and cannot be used for walking. Such cases of stiff joints and crooked legs are now operated on, one might say, wholesale. At the International Medical Congress, held in Copenhagen in 1884, Professor Macewen, of Glasgow, reported 1800 operations on 1267 limbs in 704 patients, in which he had sawn or chiselled through the bones so as to fracture them, placed them in a straight position, and after a few weeks the bone has become consolidated and the leg or arm made straight. Every one of these operations was successful, excepting five cases, and even these deaths were not due to the operation, but to some other disorder, such as an unexpected attack of pneumonia, diphtheria, or scarlet fever.

Surgery of the Head and Brain.—In the surgery of the head we find one of the most remarkable illustrations of the modern progress of surgery. Fractures of the skull have been the most dangerous and fatal of accidents until within a short time. Of course, many of them must necessarily, even now, be fatal, from the widespread injury to the bones and the brain. But our modern methods, by which we can disinfect the cavities of the ear, the nose, and the mouth, with which these fractures often communicate, and through these avenues become infected, are so successful that such cases, instead of being looked upon as hopeless, are in a majority of instances followed by recovery. Even gun-shot wounds, in which the ball may remain inside the cavity of the head, are successfully dealt with, unless the injury produced by the ball has been necessarily fatal from the start. Fluhrer, of New York, has reported a very remarkable case of gun-shot wound, in which the ball entered at the forehead, traversed the entire brain, was deflected at the back of the skull, and then pursued its course farther downward in the brain. By trephining the skull at the back he found the ball, passed a rubber drainage tube through the entire brain from front to back, and had the satisfaction of seeing the patient recover.

Until 1884 it was excessively difficult to locate with any degree of accuracy a tumor within the brain, but in that year Dr. Bennett, of London, for the first time accurately located a tumor within the skull without there being the slightest evidence on the exterior of its existence, much less of its location. Mr. Godlee (surgeons in England are not called “Dr.,” but “Mr.”) trephined the skull at the point indicated, found the tumor, and removed it. True, this patient died, but the possibility of accurately locating a tumor of the brain, reaching it and removing it, was now demonstrated, which is far more important to humanity at large than whether this individual patient survived or not. Since then there have been a very large number of tumors successfully removed. The latest statistics are those of Von Bergmann, of Berlin, in 1898. He collected 273 operations for brain tumors, of which 169 (61.9 per cent.) recovered, and 104 (38.1 per cent.) died. This is by far the best percentage of results so far reported, but there is reason to believe that with the constant improvement in our ability to locate such tumors and in our methods of removing them, the mortality rate will be still further lessened.

Even more successful than the surgery of brain tumors has been the surgery of abscess of the brain. I have no available statistics of the exact numbers, but it is certain that several hundred have been operated on, and with even better success than in the case of brain tumors. The most frequent cause for such abscesses is old and neglected disease of the ear. No child suffering from a “running from the ear,” which is especially apt to follow scarlet fever and other similar disorders, should be allowed to pass from under the most skilled treatment until a cure is effected. This is the commonest cause of abscess of the brain. The inflammation in the ear, which begins in the soft lining of the cavities of the ear, finally extends to the bone, and after years of intermittent discharge, will suddenly develop an abscess of the brain, which, if not relieved, will certainly be fatal. Prompt surgical interference alone can save life, and, happily, though we cannot promise recovery in all, a very large percentage of success is assured.

In epilepsy, as a result of injuries of the head, in a moderate number of cases, we can obtain a cure of the disease by operation, but in the great majority of cases, and, one may say, practically in all of the cases in which the epilepsy originates “of itself,” that is to say, without any known cause, it is useless to operate, certainly at least after the epileptic habit has been formed. Possibly were operation done at the very beginning we might obtain better results than experience thus far has shown us is possible.

Very many cases of idiocy are constantly brought to surgeons in the hope that something can be done for these lamentable children. Unfortunately, at present surgery holds out but little hope in such cases. In a few exceptional instances it may be best to operate, but a prudent surgeon will decline to do any operation in the vast majority of cases.

Surgery of the Chest and Heart.—The chest is the region of the body which has shown the least progress of all, and yet even here the progress is very marked. When, as a result of pleurisy, fluid accumulates on one side of the chest, even displacing the heart, we now do not hesitate to remove an inch or two of one or more ribs and thoroughly drain the cavity, with not only a reasonable, but in a majority of cases, one may almost say, a certain, prospect of cure. We have also entered upon the road which will lead us in time to a secure surgery of the lung itself. A few cases of abscess, of serious gun-shot wound, attended by otherwise fatal hemorrhage, and even of tubercular cavities in the lungs have been successfully dealt with, but the twentieth century will see, I have no doubt, brilliant results in thoracic surgery.

One of the most striking injuries of the chest has recently assumed a new importance, viz., wounds of the heart itself. In several instances an opening has been made in the bony and muscular walls of the chest, and a wound of the heart itself has been sewed up. The number is as yet small, but there have been several recoveries, which lead us to believe that here, too, the limits of surgery have by no means been reached.

Surgery of the Abdomen.—Of the abdomen and the pelvis a very different story can be told. These cavities might almost be called the playground of the surgeon, and the remarkable results which have been obtained warrant us in believing that even greater results are in store for us in the future.

In the earlier part of this article I spoke of the advantages of the study of the pathological anatomy or the diseased condition of individual organs. Perhaps no better illustration of the value of this can be given than in the studies of appendicitis. This operation has been one of the contributions to the surgery of the world in which America has been foremost. While there were one or two earlier papers, Willard Parker, of New York, in 1867, first made the profession listen to him when he urged that abscesses appearing above the right groin should be operated on and the patient’s life saved. But it was not until Fitz, of Boston, in 1888, published his paper, in which he pointed out, as a result of a study of a series of post-mortem examinations of persons dying from such an abscess above the right groin, that the appendix was the seat of the trouble, that this so frequent disease was rightly understood and rightly treated.

As a result of the facts gathered in his paper, the treatment was perfectly clear, not only that we ought to operate in cases of abscess, but that in the case of patients suffering from two or more attacks, and often from even one attack of appendicitis, the appendix should be removed to prevent such abscess.

The mortality in cases in which such an abscess has formed is, perhaps, quite twenty or twenty-five per cent., whereas, if patients are operated on “in the interval,” that is to say, between attacks, when the abdominal cavity is free from pus, the mortality is scarcely more than two or three per cent., and may be even less than that.

Surgeons are often asked whether appendicitis is not a fad, and whether our grandfathers ever had appendicitis, etc. As a matter of fact, in my early professional days, appendicitis was well known. It was called “localized peritonitis” or localized “abscess,” but while the disease was very frequent, its relation to the appendix was not recognized until from his study of its pathology an American pointed it out. Even now European surgeons, with a few exceptions, are not alive to the need for operation in such cases.

There is little doubt that the great prevalence of grippe during the last few years has increased the number of cases of appendicitis, both of them being catarrhal conditions of the lining membrane of the same continuous tract of the lungs, the mouth, the stomach, and the intestines.

One of the most fatal accidents that can befall a patient is to have an ulcer of the stomach perforate so that the contents of the stomach escape into the general abdominal cavity. Until 1885 no one ventured to operate in such a case. In an inaugural dissertation by Tinker, of Philadelphia, two hundred and thirty-two cases of such perforating ulcers of the stomach were reported, of which one hundred and twenty-three recovered, a mortality of 48.81 per cent. In not a few of them, if prompt instead of late surgical help had been invoked, a very different result would have been reported. If no operation had been done, the mortality would have been one hundred per cent.

In cancer of the stomach itself we are able, as a rule, to make a positive diagnosis only when a perceptible tumor is found. By that time so many adhesions have formed, and the infection has involved the neighboring glands to such an extent, that it is impossible to remove the tumor, but the statistics even here are not without encouragement, at least for comfort if not for life. In many cases the tumor has been removed and the stomach and intestine joined together by various devices, and the mortality, which is necessarily great, has been reduced by Czerny to twelve per cent. and by Carle to seven per cent. Even the entire stomach has been removed in several cases, and recovery has followed in about one-half. Most of these patients, however, have died from a return of the disease.

When, as a result of swallowing caustic lye or other similar substances, the gullet (the oesophagus) becomes contracted to such an extent that no food can be swallowed, we now establish an opening into the stomach through which a tube is inserted at meal-time, and the patient has his breakfast, dinner, and supper poured into his stomach through the tube. If the stricture of the oesophagus is from malignant disease, of course this only prolongs life by preventing a horrible death by starvation, but in cases in which it is non-malignant life is indefinitely prolonged. The mortality of such an operation is very small.

By a freak of nature or by disease the stomach sometimes is narrowed in the middle, forming what is called an “hour-glass stomach.” In such a case we open the abdomen, make an opening into the two parts of the stomach and unite the two so that we re-establish the single cavity of the stomach. The mortality of the operation is very slight, eight per cent. Again, sometimes the stomach becomes unduly dilated, thus interfering seriously with its function. A number of surgeons in such cases have simply folded over the wall of the stomach upon itself and have sewed the two layers together, taking a plait or “tuck” in the stomach wall, and have restored it to its normal capacity and function.

One of the most important advances has been made in the treatment of gall stones. The bile in the gall bladder is in a state of quiescence, which is favorable to a deposit of crystals from the bile. These crystals become agglutinated together into larger or smaller solid masses called gall stones. Sometimes the number of these is very small, from one to four or five; sometimes they accumulate in enormous numbers, several hundreds having been reported in a number of instances. When they are small they can escape through the duct of the gall bladder into the bowel and create no disturbance, but when they are large, so that they cannot make their escape, they not uncommonly are causes not only of serious discomfort and prolonged ill-health, but often prove fatal. Nowadays one of the safest operations of surgery is to open the abdomen and the gall bladder and remove this menace to life, and the great majority of such patients recover without any untoward symptoms. Even large abscesses of the liver, and, what is still more extraordinary, large tumors of the liver, are now removed successfully. A year ago all of the reported cases of tumor of the liver were collected which had been operated from 1888 to 1898, seventy-six in all. The termination in two cases was unknown, but of the other seventy-four, sixty-three recovered and eleven died, a mortality of only 14.9 per cent.

The surgery of the intestines by itself is a subject which could well occupy the entire space allowed to this article. I can only, in a very superficial way, outline what has been done. Hernia or rupture is a condition in which through an opening in the abdominal wall a loop of the bowel escapes. If it can be replaced and kept within the abdomen by a suitable truss this was the best we could do till within the last ten or fifteen years. The safety and the painlessness of modern surgery which have resulted from the introduction of anÆsthesia and antisepsis are such that now no person suffering from such a hernia, unless for some special personal reason, should be allowed to rely upon a truss, which is always a more or less treacherous means of retaining the hernia. We operate on all such cases now with impunity. Coley has recently reported a series of six hundred and thirty-nine cases, all of which recovered with the exception of one patient. Even in children, if a truss worn for a reasonable time, a year or so, does not cure the rupture, operation affords an admirable prospect of cure.

Every now and then a band forms inside the abdomen, stretching like a string across the cavity. If a loop of bowel slips under such a band, it can be easily understood that total arrest of the intestinal contents ensues, a condition incompatible with life. There are other causes for such “intestinal obstruction,” which are too technical to be described in detail, but this may be taken as a type of all. It is impossible, of course, to tell before opening the abdomen precisely the cause of the obstruction, but the fact is quickly determined in most cases. If we open the abdomen promptly, we can cut such a band or remove the other causes of obstruction in the majority of cases, and if the operation has not been too long delayed, the prospect of entire recovery is good. The mortality which has followed such operations has been considerable, and by that I mean, say, over twenty per cent., but a very large number of the fatal cases have been lost because the operation has been delayed. In fact, it may be stated very positively that the mere opening of the abdomen to find out precisely the nature of any disease or injury is attended with but little danger. If further surgical interference is required, the danger will be increased proportionately to the extent and gravity of such interference. But “exploratory operations,” as we call them, are now undertaken constantly with almost uniform success. Even in cancer of the bowel, we can prolong life, if we cannot save it. Cancer of the bowel sooner or later produces “obstruction” and so destroys life, but in such cases we can either make a permanent opening in the bowel above the cancer, and so relieve the constant pain and distress which is caused by the obstruction, or, in a great many cases, we make an opening in the bowel above the cancer, and another below it, and, by uniting the two openings, if I may so express it, “side-track” the contents of the bowel. If the cancer has no adhesions and the patient’s condition allows of it, we can cut out the entire portion of the bowel containing the cancer, unite the two ends, and thus re-establish the continuity of the intestinal canal. As much as eight feet, nearly one-third of the entire length of the bowel, have been removed by Shepherd, of Montreal, and yet the patient recovered and lived a healthy life.

Similarly in gun-shot wounds, stab wounds, etc., involving the intestine, the modern surgeon does not simply stand by with folded hands and give opium and morphine to make the patient’s last few hours or days relatively comfortable, but he opens the abdomen, finds the various perforations, closes them, and recovery has followed even in cases in which as many as seventeen wounds of the intestine have been produced by a gun-shot wound.

The kidney, until thirty years ago, was deemed almost beyond our reach, but now entire volumes have been written on the surgery of the kidney, and it is, one might say, a frequent occurrence to see the kidney exposed, sewed fast if it is loose, opened to remove a stone in its interior, drained if there be an abscess, or, if it be hopelessly diseased, it is removed in its entirety. The other kidney, if not diseased, becomes equal to the work of both.

Of the pelvic organs, it would not be becoming to speak in detail, but one operation I can scarcely omit: namely, ovariotomy. One of my old teachers was Washington L. Atlee, who, with his brother, was among the first ovariotomists in this country who placed the operation on a firm foundation. I heard a very distinguished physician in 1862, in a lecture to his medical class, denounce such men as “murderers”; but to-day how differently does the entire profession look upon the operation! Instead of condemning the surgeon because he did remove such a tumor, the profession would condemn him because he did not remove it. The operation had its rise in America. Ephraim McDowell, of Kentucky, in 1809, first did the operation which now reflects so much credit upon modern surgery. The mortality of the Atlees was about one in three. Now, owing to the immense improvement introduced by the antiseptic methods, the deaths, in competent hands, are not over five per cent., or even three per cent.

The limits of this article compel me to stop with the story very imperfectly told, but yet, perhaps, it has been sufficient in detail to show somewhat of the astonishing progress of surgery within the century, but especially within the last quarter of the century.

About two decades ago one of the foremost surgeons of London, Mr. Erichsen, said, in a public address, that “surgery had reached its limits.” How short was his vision is shown by the fact that surgery at that time was just at the beginning of its most brilliant modern chapter.

We have reached, in many respects, apparently, the limits of our success, but just as anÆsthesia and antisepsis and the RÖntgen rays have opened new fields wholly unsuspected until they were proclaimed, so I have no doubt that the twentieth century will see means and methods devised which will put to shame the surgery of to-day as much as the surgery of to-day puts to shame that of thirty years ago, and still more of a century ago. The methods by which this will be attained will be by the more thorough and systematic study of disease and injury, so as to better our means of diagnosis, and so prepare us for immediate surgical interference, instead of delaying it, as we now do in many cases, for want of certain knowledge; by the use of new chemical and pharmaceutical means to perfect our antisepsis and possibly to introduce other methods of treatment; but, above all, we shall obtain progress by the exact experimental methods of the laboratory. We can never make progress except by trying new methods. New methods must be tried either on man or on animals, and as the former is not allowable, the only way remaining to us is to test all new methods, drugs, and applications first upon animals. He who restricts, and, still more, he who would abolish our present experiments upon animals, is, in my opinion, the worst foe to the human race, and to animals, as well, for they, as well as human beings, obtain the benefit derived from the method. He may prate of his humanity, but he is the most cruel man alive.

W.W. Keen.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page