NAVAL SHIPS

Previous

In the conditions of naval warfare the century now closed has seen a revolution unparalleled in the rapidity of the transition and equalled in degree only by the changes which followed the general introduction of cannon and the abandonment of oars in favor of sails for the propulsion of ships of war. The latter step was consequent, ultimately, upon the discovery of the New World and of the sea-passage to India by the Cape of Good Hope. The voyage to those distant regions was too long and the remoteness from ports of refuge too great for rowing galleys, a class of vessels whose construction unfitted them for developing great size and for contending with heavy weather. The change of motive power made possible and entailed a different disposition of the fighting power, the main battery weight of ships being transferred from the bows and sterns—end-on fire—to the broadsides. The combination of these two new factors caused ships and fleets necessarily to be fought in a different manner from formerly—entailed, to use the technical word, new tactics.

The innovations thus briefly mentioned, though equally radical, were much more gradual in their progress than those witnessed by our generation. The latter have occurred not merely within the lifetime but within the memory of many who are still among us. They are embraced, easily and entirely, within the reign of Queen Victoria. It has been said, plausibly, that if a naval officer who died half a century ago could revisit the earth he would find himself more at home in the ships of Elizabeth than in those of her present successor. No such sudden and sharp contrast troubled the seamen of the earlier era. It is true and interesting to note that the battle of Lepanto in 1573, although a few vessels of broadside type therein exercised a decisive influence, was fought chiefly by galleys, while in the contest with the Spanish Armada in the English Channel fifteen years later sailing ships played the leading part; but while the fact gives a valuable assistance to precision of memory by fixing an approximate date when the one type was definitely supplanted by the other, it remains that the turning-point thus indicated was reached long after cannon and sails first were used afloat, and that another century elapsed before the galley was definitively abandoned.

BIRD’S-EYE VIEW OF THE TRANSITION

A few dates will illustrate the swiftness of our recent transformations. In 1838, when the French navy reduced San Juan de Ulloa, the principal defence of Vera Cruz, and in 1840, in the British attack upon Acre, the fighting power was wholly in sailing ships such as had fought at Trafalgar thirty-five years before. Two small paddle steamers towed the French frigate into position, while the four British vessels of the same type contributed only a desultory addition to the broadsides of seven sailing ships of the line, which compelled the surrender of the fortress. The first screw ship of the line in the British navy was launched in 1852; the last sailing ship of that class went out of commission in 1860. All alike, the ships of Vera Cruz and of Acre, and their short-reigning successors, the steam frigates and ships of the line, are now as much things of the past, in sails, in engines, and in guns, as are the galleys of Lepanto and the ships of the Armada. By 1870 it had been recognized everywhere that a type of vessel corresponding in essential features with the present armored battle-ships had displaced all competitors. The span of a single generation had seen the transition of the ships of Drake and Nelson to those of our own day. The career of Farragut was run in the intermediate period. His success for the most part was achieved and his renown won with vessels substantially of the older type, but with auxiliary steam-power.

It is almost needless to remark that this seemingly abrupt transition is but one incident in the startling progress made during the century in all the arts of peace as of war. Like the others, it is due to an intellectual activity, greater probably than that of our predecessors, and directed since the peace of 1815 less upon external political interests than upon scientific investigation, and upon the application of the results to the improvement of processes of every kind. The changes in conception and in development of the instruments of naval warfare result from the increased power of dealing with refractory material which has been acquired by scientific and practical men in the laboratory and the workshop. Thus viewed, though so rapid in realization as to amount to a revolution, not only is the change seen to be the outcome of a long, though silent preparation, but it is brought also into its due relation to the general movement of the age, and found to share its special characteristics. Our ancestors of the eighteenth century had their own problems, noble and absorbing, but chiefly political in character. While new worlds were being gathered into the embrace of European civilization, the leading powers struggling among themselves for pre-eminence in the work, and while the harvest was ripening for the French Revolution, science crept forward, but slowly and silently, the pre-occupation of the few, not the interest of the many.

The object of the present article is to describe the type of war vessel prevalent universally among civilized nations when the nineteenth century opened, and to trace historically the sequence of ideas and of facts which have resulted in the type whose general acceptance is seen now in the practice of the chief naval states.

SAILING SHIPS AND BROADSIDE BATTERIES

When the nineteenth century began, the ships that contended for the control of the sea were, and for two centuries had been, sailing ships with broadside batteries: the guns, that is, were distributed along both sides from the bow to the stern on one, two, three, or four decks. From the largest down, all were of this type until the very smallest class was reached. In the latter, which could scarcely be considered fighting ships, the gun power was at times concentrated into a single piece, which swept from side to side round the horizon, thus anticipating partially the modern turreted ironclad with its concentrated revolving battery.

The arrangement of guns in broadside involved anomalies and inconveniences which seem most singular when first noted. A ship in chase of another, for instance, had no guns which threw straight ahead. If it were wished to fire, in order to cripple the fleeing enemy, it was necessary to deflect from the course; and in order to bring most of the guns on one side into play the vessel had to swing round nearly at right angles to the direction of pursuit. This, of course, lost both time and ground. Broadside fire—the distribution of guns in broadside—rests, however, upon an unchangeable condition, which controls now as it did a century ago. Ships then were from three to four times as long as they were broad; the proportion now is, length from four to six times the breadth—or beam, as it is technically called. Therefore, except in small vessels, where the concentration of the whole weight that can be carried in battery gave but one piece effective against a probable target, a full development of fire required the utilization of the long side of the ship rather than of its short cross-section. This is precisely analogous to the necessity that an army has of deploying into line, from any order of march, in order to develop its full musketry fire. The mechanical attainment of the last century did not permit the construction of single guns that would contain the weight of the whole battery of a big ship: but even had it, guns are not wanted bigger than will penetrate their target most effectively. When an ounce of lead will kill a man it is useless to fire a pound. The limit of penetration once reached, it is numbers, not size, that tell: and numbers could be had only by utilizing the broadside. This condition remains operative now; but as modern battle-ships present two or more kinds of target—the heavy armored and that which is light armored, or unprotected—the application of the principle in practice becomes more complicated. Batteries now are necessarily less homogeneous than they once were, because targets vary more.

DISAPPEARANCE OF BOW FIRE

The adoption of broadside batteries followed, therefore, necessarily upon increase of size and consequent length, but not upon that only. It is instructive to observe that the sailing fighting ship was derived, in part, at least, from the galley, and its resemblance in form to the latter is traceable for at least a century after the general disuse of the oar. As the galley, however, was small, it could concentrate its fire advantageously in one or two pieces, for which small number the cross-section offered a sufficient line of emplacement: and as, when it could move at all, it could move in any direction, there was a further advantage in being able to fire in the direction of its motion. Hence, bow fire prevailed in galleys to the end, although the great galleasses of Lepanto and the Armada had accepted broadside batteries in great part, and whenever the galley type has recurred, as on Lake Champlain during our Revolutionary War, bow fire has predominated. The sailing ship, on the contrary, was limited as to the direction in which she could move. Taking her as the centre of a circle, she could not steer directly for much more than half the points on the circumference. Bow fire consequently was much less beneficial to her, and, further, it was found that, for reasons not necessary to particularize, her sailing, steering, and manoeuvring were greatly benefited by the leverage of sails carried on the bowsprit and its booms, projecting forward of the bow, where they interfered decisively with right-ahead fire.

For all these reasons, bow fire disappeared and broadside fire prevailed; but the fundamental one to be remembered is the greater development of fire conferred by greater length. All ships—except the very small ones known as schooners, cutters, and gunboats—were broadside vessels, moved by canvas which was carried commonly on two or three masts; but into the particulars of the sails it is presumed readers will not care to enter. Being thus homogeneous in general characteristics, the ships of this era were divided commonly into three principal classes, each of which had subdivisions; but it was recognized then, as it is now in theory though too little in practice, that such multiplication of species is harmful, and our forerunners, by a process of gradual elimination, had settled down upon certain clearly defined medium types.

The smallest of the three principal classes of fighting ships were called sloops-of-war, or corvettes. These had sometimes two masts, sometimes three; but the particular feature that differentiated them was that they had but one row of guns in broadside, on an uncovered deck. The offices discharged by this class of vessel were various, but in the apprehension of the writer they may be considered rightly as being above all the protectors or destroyers of commerce in transit. All ships of war, of course, contributed to this end; but the direct preying upon commerce, upon merchant ships, whose resisting power was small, was done most economically by small vessels of relatively small power. Having a given amount of tonnage to devote to commerce destroying, many small vessels are more effective than a few big ones of unnecessary force. Such being the nature of the attack, the resistance must be similar in kind. That is, a flock of merchant ships being liable to attack by many small adversaries, several small protectors would be more efficient than one or two large ones. Sloops-of-war served also as despatch vessels and lookouts of a fleet, but were less well adapted to this service than the frigate was.

THE FRIGATE AND HER GUNS

This latter celebrated and favorite class of ship stood next in order of power above the corvette, with which it might also be said to have blended; for although in the frigate class there were two, or at the most three, rates that predominated vastly in numbers over all the rest, yet the name covered many differing degrees of force. The distinguishing feature of the frigate was that it carried one complete row of guns upon a covered deck—upon a deck, that is, which had another deck over it. On this upper or spar deck there were also guns—more or fewer—but lighter in weight than those on the covered deck, usually styled the main deck. The two principal classes of frigates at the beginning of this century were the thirty-two-gun and the thirty-eight-gun. That is, they carried nominally sixteen or nineteen guns on each side; but the enumeration is misleading, except as a matter of comparison, for guns of some classes were not counted. Ships generally had a few more cannon than their rate implied. The United States thirty-two-gun frigate Essex, for example, carried at first twenty-six long twelves on the main deck, with sixteen carronades and two chase guns on the spar deck. Above these two classes came the forty-four-gun frigate, a very powerful rate, which was favored by the United States navy and received a development of strength then unprecedented.

Being such as here described, the frigate was essentially, though not exclusively, the appendage of a fleet of line-of-battle ships. Wars are decided not by commerce destroying nor by raids, however vexatious, but by fleets and armies, by great organized masses—that is, by crushing, not by harassment. But ships of the line, to perform their function, must keep together, both when cruising and when on the field of battle, in order to put forth their strength in combination. The innumerable detached services that must be discharged for every great organized force need for a fleet to be done by vessels of inferior strength, yet so strong that they cannot be intercepted or driven off lightly by every whipper-snapper of an armed ship that comes along. Moreover, a fact not always realized, speed—speed to hasten on a mission, to overtake a foe, or to escape pursuit—depends upon size, masts that can carry sail and hold way amid heavy seas. Hence the frigate, not the lighter sloop, was indicated for the momentous duties upon which depended the intelligence and the communications of the fleet. Such leading considerations are needed to be stated and to be kept in mind, for they affected the warfare of the last decade of the century quite as really as they did that of the first, and a paper would indeed be incomplete which confined itself to indicating points of difference of progress, so-called, and failed to recognize those essential and permanent conditions which time will never remove. Frigates and sloops have disappeared in name and form, in motive power and in armament. Their essential functions remain, and will remain while war lasts.

DUTIES OF THE FRIGATE

The truth of this statement will be evident from a brief mention of the duties frigates actually used to perform. While attending the fleet, not merely a part of it, the frigates were thrown out far in advance and on each side, as cavalry on land scours the country towards or through which the army advances. The distance to which they would be thus detached would sometimes amount to one hundred or two hundred miles, and the absence to days, rejoining being assured by the assignment of a rendezvous, or by an adequate knowledge of the admiral’s intended movements. It will be recognized that when thus alone frigates might meet equal or superior forces, to resist or to escape from which both strength and speed were needed. An extreme and particular case of such service was the watching of an enemy’s port by one or more frigates, when they had to keep close to the entrance, although a fleet might be within. Again, frigates were placed in certain central positions, rendezvous known only to the superior officers, where they cruised steadily, having information as to the whereabouts of the fleet, or instructions for expected vessels. They were there centres of intelligence, round which the movements of the whole body revolved. When the fleet was actually in touch with a hostile fleet, in pursuit, or when expecting battle, the frigates were placed between their own force and the enemy; nearer, however, to the latter, as the essential point was to keep knowledge of his whereabouts and probable intentions. Such a position was at times extremely exposed. The frigates had to avoid equally capture and being driven and shaken off; they must keep close, yet not be caught. When engagement ensued they passed through to the off side of their own fleet, where they were dispersed at intervals abreast the main line, like the file closers of a military line ashore. Here they fulfilled one special purpose, besides others. As the fleet fought with broadsides only, its ships were ranged one ahead of the other. Consequently signals made on the masts of the admiral could not be seen always by those ahead or astern of him; but the frigates in the other line made the same signals, “repeated,” as it was said, where they could be read more certainly. But frigates did also more hazardous work. They went to crippled ships of the line and towed them into other positions, into or out of fire, and at times the admiral summoned a frigate alongside to carry a message to some part of the battle. “I noticed,” says Marryatt, in one of his novels, “the look of pride on the faces of our officers when it appeared that the loss on board our frigate was greater than that of some of the ships in the line.”

For such offices it is evident there were wanted a strength and a weight which the corvette did not have. A corvette would make poor work of towing a heavy ship, and could not carry as surely the sail needed to maintain a position. At the same time it should be observed that excess of size above the requirements stated should be exceptional. In the opinion of the writer the forty-four-gun frigate in her day possessed a fighting force and a weight of body in excess of that required by the ordinary functions of her nominal class. For exceptional reasons, a few of the type were permissible in a large navy. On the other hand, it may be inferred from the long experience of the British navy, and the resultant practice, that ships of twenty-eight, twenty-four, and twenty guns, though often styled frigates, were not found satisfactory as such. In the distribution of tonnage between size and numbers, a mean must be found; and it must be added that a just mean is a very different thing from a compromise. These considerations also apply to present-day problems.

EARLY SHIPS OF THE LINE

In the fleet-ship, likewise the ship of the line, as the opening century styled the class of vessel known in the closing days as the battle-ship, our predecessors had reached a mean conclusion. The line-of-battle ship, or the ship of the line, as more usually called, differed from the frigate generically, in that it had two or more covered decks. There were one or two cases of ships with four decks, but, as a rule, three were the extreme; and ships of the line were roughly classed as two or three deckers. Under these heads two-deckers carried in their two centuries of history from fifty to eighty-four guns; three-deckers from ninety to one hundred and twenty. The increase in number of guns, resulting, as it did, from increase of size, was not the sole gain of ships of the line. The bigger ships got, the heavier were their timbers, the thicker their planking, the more impenetrable, therefore, their sides. There was a gain, in short, of defensive as well as offensive strength, analogous to the protection given by armor. “As the enemy’s ships were big,” wrote a renowned British admiral, “they took a great deal of drubbing.”

Between the great extremes of strength indicated by fifty and one hundred and twenty guns—whose existence at one and the same time was the evidence of blind historical development, rather than of intelligent relative processes—the navy of a century ago had settled upon a mean, to appreciate which the main idea and purport of the ship of the line must be grasped. The essential function of the ship “of the line” was, as the name implies, to act in combination with other ships in a line of battle. To do this was needed not only fighting power, but manoeuvring ability—speed and handiness—and in order that these qualities might approach homogeneousness throughout the fleet, and so promote action in concert, the acceptance of a mean type was essential. To carry three decks of guns, a ship had to expose above water a side disproportionately high relatively to her length, her depth, and her hold upon the water. She consequently drifted rapidly when her side was turned to the wind; while, if her length was increased, and so her hold on the water, she needed more time and room to tack and to wear—that is, to turn around. Ships of this class also were generally—though not necessarily—slow.

ADVANTAGES OF THE SEVENTY-FOURS

The two-decked ship was superior in speed and in handiness, and for that reason, even when acting singly, she could put forth such power as she possessed more quickly and more certainly. But these qualities were most conspicuously valuable when ship had to act with ship. The great secret of military success, concerted action in masses, was in the hands of the two-decked ship, because in her were united to the highest point individual power and facility for combined action. And this was true not only of two-deckers in general, but of the particular species known as the seventy-four-gun ship. Ships below that rate lacked individual fighting power. Ships above it, the eighty and eighty-four, lost manoeuvring power because of their greater length and weight. Under the conditions of sail a fleet of seventy-fours could get out the whole power of the force more surely and more rapidly than the equivalent number of guns in ships of any other kind. Thus offensive power dictated its survival. To our own day it reads the lesson that offensive power, the sine qu non of a military organization, lies not merely in the greatest strength of the single ships, but in the uniformity of their action and rapidity of their movements, as conducive to the quick putting forth of the strength of the whole body at once and in mutual support.

It may be asked naturally, why, then, were there any ships bigger or smaller than this favored type? For smaller, the answer is that short ships of lighter draught are best suited for shoal or intricate navigation. The shoals of Holland forbade heavy ships to the Dutch navy, materially reducing its fighting strength. Before France entered our Revolutionary struggle the British sent only sixty-fours to operate upon our comparatively shallow coasts and bars. As regards bigger ships, they were useful exceptionally, as were forty-four-gun frigates, and for the following reason: Every line of battle has three particularly dangerous points—the centre, because there the line, if pierced, divides into the two smaller fragments; and the flanks, or ends, because the extremities are supported less easily by the rest of the force than the centre is, one extremity being farther from the other than the centre is from either. Such local weakness could not be remedied by the use of two ships, for, if the line were properly closed, one of them could fire at the enemy only through or over the other. The sole way of giving the strength there required was by concentrating it into individual ships, either by putting on the additional battery, which gives a three-decker, or by making the seventy-four heavier, resulting in an eighty-gun ship on two decks. These stronger vessels were, therefore, stationed in the centre or on the flanks of a line of battle. The particular functions, the raison d’Être, of the three leading classes of ships of war—the sloop, the frigate, and the ship of the line—have now been stated. It remains to give an account of the chief features of the armament carried on their broadsides, as described.

BATTERIES SEVENTY-FIVE YEARS AGO

When the nineteenth century began, batteries of ships were composed of two principal classes of guns: the long gun and the short gun, or carronade. The difference between these lay in the way the weight of metal allowed for each was utilized. The long gun, as its name implies, was comparatively long and thick, and threw a small ball with a heavy charge of powder. The ball, therefore, flew swiftly, and had a long range. A carronade of the same weight was short and comparatively thin, could use only a small charge of powder, lest it burst, and threw a large ball. Its shot, therefore, moved slowly and had short range. Fired at a target—a ship’s side—within range of both guns, the shot from the long gun penetrated quickly, the wood had not time to splinter badly, and a clean hole was the result. The carronade’s shot, on the contrary, being both larger and slower, penetrated with difficulty, all the surrounding wood felt the strain and broke up into splinters, leaving a large jagged hole, if the shot got through. These effects were called respectively piercing and smashing, and are reproduced, in measure, upon targets representing the side of a modern ironclad. They have been likened familiarly to the effect of a pistol-ball and of a stone upon a window pane: the one goes through clean, the other crashes. The smashing of the carronades, when fully realized, was worse than penetration, and was greatly dreaded; but, on the other hand, a ship which feared them in an opponent might keep out of their range. This expedient was so effective that carronades, which did great damage until their tactics were understood, gradually fell into disfavor. Nevertheless, they remained in use till after the peace of 1815. In 1814 the battery of the U.S.S. Essex was chiefly carronades, and their inadequate range was a large factor in her defeat.

At the period in question guns of all sorts fired only non-explosive projectiles, solid or hollow shot. The destructive shell of the present day was used only by pieces called mortars, in vertical firing, which will be spoken of farther on. Such were not mounted on the ships of the fleet generally, nor used against shipping, except when packed in a small harbor. They did not enter into naval warfare proper. The ram and the torpedo of present warfare were unknown. On the other hand, there was practised a form of fighting which is thought now to have disappeared forever, namely, boarding and fighting hand-to-hand on the deck. Even then, however, boarding did not decide the main issue of a sea-fight, except occasionally in very small vessels. The deck of a large and fresh ship was not to be reached easily. Boarding was like the cavalry charge that routs a wavering line; the ship had been beaten at the guns before it occurred.

The real fighting was done by the long guns and carronades disposed in the broadsides. Besides rapidity and precision of fire, always invaluable, the two opponents sought advantage of position by manoeuvring. They closed, or they kept apart, according to their understanding of the other’s weight and kind of battery. Each tried, when possible, to lie across the bow or the stern of the enemy, for then his guns ranged from end to end of the hostile ship, while the latter’s broadside could not reply. Failing this extreme advantage of position, the effort was made so to place one’s self that the opponent’s guns could not bear—for they swept only a few degrees before and abaft the broadside—while your own could. If this also was impossible, the contestants lay side to side at a greater or less distance, and the affair became an artillery duel.

BRITISH AND FRENCH STYLES OF FIGHTING

Besides these recognized advantages of position, there was also a question upon what part of the enemy the fire should be directed. In this there were two principal schools of tactics, one of which aimed at the hull, to break down the fire of the hostile ship and destroy her fighting men, while the other sought, by pointing higher, to cut away the sails, rigging, and masts, rendering the foe helpless. The latter, in general, was the policy of the French; the former, and, it may be affirmed, the more surely successful, was the practice of the British. The two schools find their counterpart in the tactical considerations which now affect the question of rapid-fire and of heavy guns, each of which has its appropriate target, covering in the latter case the motive power, in the former the personnel.

These three leading classes of vessels, with their functions, armaments, and tactics of the single ship, as described, performed in their day and during the great maritime contests of two centuries all the duties that at any time can be required of a maritime fighting organization. By them the control of the sea in the largest sense was disputed and was determined; by them commerce was attacked, and by them it was protected. They themselves have passed away, but the military factors remain the same. The mastery of the sea and the control of its commerce—of which blockade is but a special case—are now and must remain always the chief ends of maritime war. The ends continuing the same, the grand disposition of navies—their strategy—reposes upon the same principles that it ever did. Similarly, while the changes in the characteristics of ships will cause the individual vessel to be fought in manners different from its predecessors, the handling of masses of ships in battle—fleet tactics—must proceed on the same general principles as of old. The centre and the two extremities of all orders are always the points of danger; concentration upon one or two of the three, however effected, must be always the principle of action. These things, which cannot vary, form, therefore, no part of a paper which deals with changes.

THEY HAD THEIR BREAK-DOWNS THEN, TOO

There should be added for the general public the caution that the difficulties, the imperfections, and the frequent halting state of ships-of-war in commission for sea service at the present day are no new things. To the naval historian familiar with the correspondence of the past they are the inevitable attendants of all government action, wherein the most economical methods are always dominated, historically, by considerations of expediency which are political in character. The necessity of keeping the public in good-humor, and of not laying open points upon which opposition can enlarge, induces apparent economies, which sacrifice not only economy, but the best results. This is a great evil, as yet apparently inseparable from public enterprises as distinguished from private ones. If any one supposes that the ships with which Great Britain overthrew Napoleon, and with which Nelson and his contemporaries won their as yet unparalleled victories, were always or generally in good material condition, he is greatly mistaken. What is different in our day, apparently, is a tendency in ships to rely for their repairs and material efficiency more upon dock-yards and workshops than upon their own resources, a disposition also to be unduly discouraged by imperfections in the motive enginery. War will correct this or war will fail. In maintaining efficiency while keeping the sea, quite as much as in fighting skill, lay the supreme excellence of officers like Nelson and Jervis. Men now ought to appreciate better than they do what difficulties of this sort seamen underwent a hundred years ago and how they refused to yield to them. “The difference between myself and the French marshals,” the Duke of Wellington is reported to have said, “was as when a man starts on a journey with a new harness. What if something gives way, as in war something is sure to go wrong? Shall you stop or go back for a workman? Not so; hitch up the break with a bit of rope, or whatever comes handy, and go on. That is what I did.”

The succession of cause and effect which has produced the present ship-of-war will be traced in rapid outline, in order to leave as much room as may be for the description of the essential feature of the ship herself as she now exists.

Two chief factors concur to a ship-of-war—motive power and fighting power. The displacement of sails by engines, and the progressive development of the latter, are features of the general progress of the century. The engines of a ship-of-war are differentiated from those of merchant ships chiefly by the necessity of protection. This affects their design, which must be subordinated to the requirement of being as far as possible below the water-line. The further great protection now afforded is incident rather to the use and development of armor as a part of the fighting power. Fighting power divides into offensive and defensive. Armor now represents the latter. The fighting ship in every age is the product of the race between the two, and in the nineteenth century this was unprecedented in the ground covered and in the rapidity of the pace, due to the increased power of dealing with materials, already alluded to.

CONTEST OF ARMOR AND PROJECTILE

The modern contest began with the introduction of horizontal shell fire in the third decade of the century. This term must be explained. It has been said that all ships’ guns up to 1815 threw non-explosive projectiles. In practice this is true; although Nelson alludes to certain shell supplied to him for trial, which he was unwilling to use because he wished not to burn his prizes, but to take them alive. A shell is a hollow projectile filled with powder, the idea of which is that upon reaching the enemy it will burst into several pieces, each capable of killing a man, and the flame not impossibly setting woodwork on fire. It was necessary that the powder within should not explode from the combustion of the cartridge of the gun, for if it did its force, combined with the latter, might burst the gun; yet the process that should result in bursting must begin at that moment or else it would not take place at all. This difficulty was met by a short column of hard, compressed powder called the fuse, which extended from the outside to the inside of the shell. The outer end was inflamed by the charge of the gun, but from its density it burned slowly, so that the charge of the shell was not enkindled for five, ten, or more seconds. This expedient was in use over a century ago; but owing to imperfections of manufacture, no certainty was attained that the fuse might not be driven in or broken by the force of the discharge, or the shell itself be cracked and so explode prematurely. Shell, therefore, were fired with very light charges; and, to obtain sufficient range—go far enough—they were used in very short, very thick guns, called bombs or mortars, to which great elevation was given. Such firing, because the shell flew high in the air, was called vertical firing, in contradistinction to the fire of the long gun or carronade, called horizontal fire because their projectiles rose little above the level.

The destructiveness of shell from ordinary guns was so obvious, especially for forts to use against wooden ships, that the difficulties were gradually overcome, and horizontal shell fire was introduced soon after the cessation of wars allowed men time for thought and change. But although the idea was accepted and the fact realized, practice changed slowly, as it tends to do in the absence of emergency. In the attack on Vera Cruz, in 1848, Farragut was present, and was greatly impressed, as with a novelty, by the effect of what he called the “shell shot,” a hybrid term which aptly expresses the transition state of men’s minds at the time. I remember an officer who entered the navy in 1840 telling me the respectful awe and distrust with which his superiors then regarded the new weapon, a very few of which for each gun were supplied tentatively. Ten years more, however, saw a great change, and in 1853 the attack of the Russian squadron of wooden sailing-ships upon the Turkish vessels in the Bay of Sinope gave an object-lesson that aroused the naval world to what wooden ships must expect from horizontal shell fire. In a few minutes three out of seven Turkish frigates were in flames; while of nine sailing-ships and two steamers only one of the latter escaped.

HORIZONTAL SHELL FIRE

The Crimean War followed quickly, and in 1854 the wooden steamships of the line of the allies, vessels identical in fighting characteristics with those of Trafalgar, attempted to silence masonry works at Sebastopol. Though the disaster was not so great, the lesson of Sinope was reaffirmed. Louis Napoleon, a thoughtful man though scarcely a man of action, had foreseen the difficulty, and had already directed the construction of five floating batteries which were to carry armor. Before the war ended these vessels attacked the forts at Kinburn, which they compelled to surrender, losing, themselves, no men except by shells that entered the gun ports. Their armor was not pierced.

Horizontal shell fire had called for iron armor, and the two, as opposing factors, were now established in the recognition of men. The contest between the two sums up the progression and the fluctuations of military ideas which have resulted in the battle-ship of to-day, which, as the fleet-ship, remains the dominant factor in naval warfare, not only in actual fact but in present probability. From the first feeble beginnings at Kinburn to the present time, although the strife has waxed greatly in degree, it remains unchanged in principle and in kind. To exclude the shell, because, starting as one projectile, it became many after penetration, in what does it differ from excluding the rapid-fire gun, whose projectiles are many from the first, and penetrate singly?

There occurred, however, one singular development, an aberration from the normal line of advance, the chief manifestation of which, from local and temporary conditions, was in our own country. This was the transient predominance of the monitor type and idea; the iron-clad vessel, with very few very heavy guns, mounted in one or two circular revolving turrets, protected by very heavy armor. The monitor type embodied two ideas. The first was the extreme of defensive power, owing to the smallness of the target and the thickness of its armor—the hull of the vessel rising but little above the water—the turret was substantially the only target. The second was an extreme compression of offensive power, the turret containing two of the heaviest guns of the day, consequently guns of the heaviest penetration, which could fire, not in one direction, nor in several, but in all directions as the turret revolved, and which were practically the sole armament of the ship. The defensive power of the monitor was absolute up to the extreme resisting endurance of its armor. Its offensive power must be considered relatively to the target to which its guns were to be opposed. If much in excess of that target’s resistance, there was waste of power. Actually in our Civil War monitors were opposed to fortifications, except in one or two instances when they had to contend with the imperfect structures which the Confederates could put afloat. The target, therefore, was not in excess of their gun power. Moreover, being for coast warfare, the monitor then was necessarily of small draught and small tonnage. Her battery weight, therefore, must be small, and consequently lent itself to concentration into two guns, just as the battery weight of a schooner a century since found its best disposition in one long traversing gun.

This was the infancy period of the iron-clad ship. The race between guns and armor was barely begun, and manufacturing processes still were crude. As these improved, with astounding rapidity, the successful production of rifled cannon of ever-increasing dimensions and penetrative force imposed an increased armor protection, which at the first was obtained chiefly by an increase of thickness, i.e., of weight. As guns and armor got heavier, ships had to be bigger to carry them, and, if bigger, of course longer. But the monitor idea, admirably suited to small ships, had now fast hold of men’s minds—in England especially, for the United States lapsed into naval somnolence after the war—and it was carried irreflectively into vessels of huge dimensions whose hulls rose much above the water. Weight for weight, the power of the gun outstripped the resistance of armor, and it soon became evident that even in a large ship perfect protection could be given only to a part of the structure. Passing over intermediate steps, the extreme and final development of the monitor idea was reached in the Inflexible, planned in 1876 by the British Admiralty, built in the following years, and still in service. This vessel was of eleven thousand eight hundred and eighty tons displacement. She was three hundred and twenty feet long, and of that length only the central one hundred and ten feet had protection, but that was by armor two feet thick, while armored partitions extended from each end of this side belt across the vessel, forming a box one hundred and ten feet long by seventy-four broad. Within this box were two turrets, each with sixteen inches of armor, and carrying two guns which threw a shell of a ton weight.

THE COMING OF THE MONITOR

The first monitor has been called an epoch-making ship, for she began an era. The Inflexible was also epoch-making, for she closed the era of the monitor pure and simple. Upon a development of three hundred and twenty feet of length she carried only four guns, of which it is not too much to say that their power was very far in excess of almost all targets that could be opposed to them. If, indeed, her possible opponents could have carried such an armor as her own all over their exposed surface, her guns would have been no heavier than needed, and the fewness must be accepted; but this was not the case. Like herself, ships of twelve thousand tons must have a penetrable target far exceeding in surface the almost impregnable box she presented. The unreasonableness of the result struck men at once, though of course she had advocates. As an exception, such a ship might pass; as a type, never. It was pointed out that guns of very small power could pierce the exposed ends about the water-line, and that, as water entered by numerous holes, she would not only sink lower, but for constructional reasons, not necessary here to give, she would lose stability rapidly—become liable to overset. If under such conditions she attempted to turn round, the inclination vessels take in so doing would be enough alone to cause her to capsize. Her defenders did not deny this; but they said that the likelihood of her exposed ends being so riddled was too slight to justify alarm.

Under artillery conditions, then, this reply was plausible, though it soon ceased to be so. Even then, however, it was true that a ship with only four guns that fired very slowly, and with such an exposed surface, was liable to serious injury from a nimble antagonist firing many guns rapidly. The defensive weakness of the Inflexible is apparent; her offensive power, great as in the aggregate it was, was much impaired by lack of proper development, by undue compression into very few guns, the larger part of whose effect was wasted, except in the rare instances when they struck a target not often to be encountered. But this was not the only deduction from her strength through the excess of concentration. Very large guns fire very slowly, yet they are as subject to inaccuracy from the motion of the ship as is the smallest piece. Where the target is missed, it is immaterial whether the shot weighs a ton or a pound; and a gun that fires ten times to another’s once has ten times the chance of hitting. It is evident, therefore, taking the Inflexible as she was, that a ship of the same weight and length with ten guns in broadside—twenty altogether—and with similar armor over her engines only, would have at the least a fair chance against the Inflexible, and would be much more efficient against vessels with average armor. Each of her ten guns firing once a minute, while the Inflexible’s cannon required five minutes for discharge, would give over ten shots to one.

CRITICISM OF THE INFLEXIBLE

While the Inflexible was building there was born the idea whose present maturity enforces the abandonment of the pure monitor, except for vessels comparatively small and for special purposes. Machine guns, the Gatling, and the mitrailleuse were already known, and the principle was being applied to throw projectiles of a pound weight and over, which were automatically loaded and fired, requiring only to be aimed. Upon these followed the rapid-fire gun, of weight greatly exceeding theirs, the principle of which may be said to be that it is loaded by hand, but with ammunition so prepared and mechanism for loading so simple and expeditious as to permit a rate of firing heretofore unparalleled. The highest extension of this principle is reached in the five-inch gun, up to which size the cartridge and the projectile make a single package called fixed ammunition, which is placed by one motion. Together they weigh ninety-five pounds, about as much as an average man can handle in a seaway, the projectile itself weighing fifty pounds. There are, it is true, six-inch rapid-fire guns, but in them the cartridge and shell are placed separately, and it is questionable whether such increase of effect, through greater weight, as they give is not gained at a loss of due rapidity.

The Inflexible exemplified in an extreme form the elements of offensive and defensive strength and weakness. Four guns of enormous calibre and no other battery, except pieces so light as to be useless against the thinnest armor, an impenetrable wall, covering a very limited area, and the remainder of the hull exposed, to be cut to pieces by a battery of numerous light cannon. When to the latter the rapid-fire idea was successfully applied, multiplying their efficiency three or fourfold, her position, as an example to be followed, became untenable. The monitor idea, which refused to utilize the broadside for developing fire, and aimed chiefly at minimizing the target, evidently needed qualification after a certain moderate limit of size was passed; and that limit of size was when the entire weight of battery the ship could carry sufficed only for two, or, at the most, four guns of power great enough to pierce heavy armor. Strictly, in the opinion of the writer, the monitor type should not prevail beyond the size that can bear only one turret.

In the strife of guns with armor, therefore, increase of power in guns, outstripping continually the increase of resistance in armor, called for bigger ships to bear the increased armor weight, till the latter could not possibly be placed all over the ship’s body. Hence the exposed target, upon which plays the smaller battery of rapid-fire guns.

To comprehend fundamentally the subsequent development, we must recur to the rudimentary idea that a ship of war possesses two chief factors, motive force and fighting force, the latter being composed of guns mainly and of men. Corresponding to these two chief powers there were of old, and there are still, two vulnerable elements, two targets, upon one or the other of which hostile effort logically and practically must be directed. A century ago the French, aiming at sails and spars, sought the destruction of the motive force; the British directed their fire upon the guns and men. In strict analogy now, the heavy guns seek the motive power, over which the heaviest armor is concentrated; the rapid-fire guns, searching the other portions of the ship, aim at the guns and men there stationed.

BATTLE-SHIPS OF THIS DAY

The logical outcome of these leading ideas is realized in the present battle-ships as follows: There are two turrets, protected by armor, the thickest that can be given them, considering the other weights the ship has to carry, and of the highest resisting quality that processes of manufacture can develop. Armor of similar character and weight protects the sides about the engines. In each turret are guns whose power corresponds to the armor which protects them. Their proper aim—not, of course, always reached—is the heavy armored part of the enemy, chiefly the engines, the motive power. When they strike outside of this target, as often must happen, there is excess of blow, and consequent waste. The turrets are separated, fore and aft, by a distance as great as possible, to minimize the danger of a single shot or any other local incident disabling both. The fact that the ends of ships, being comparatively sharp, are less waterborne and cannot support extreme weights, chiefly limits this severance of the turrets. Between the two, and occasionally before or abaft them, is distributed the broadside rapid fire of the ship, which in its development is in contradistinction to the compressed fire of the monitor. This fire is rapid because the guns are many and because individually they can fire fast. Thus, the turret gun, twelve or thirteen inch in bore, fires once in five minutes; the five-inch rapid-fire gun thrice in one minute. The rapid-fire battery aims outside of the heaviest armor. When it strikes that, unless it chance to enter a gun port, its effect is lost; but as much the greater part of the ship is penetrable by it, the chance of wasting power is less than in the case of the heavier guns. As most of a ship’s company are outside the protection of the heaviest armor, the rapid-fire gun aims, as did the British in the old line-of-battle ship, at the personnel of the enemy.

The reader will comprehend that in the application of these leading ideas there is considerable variety in detail. The two turrets may be looked upon at present as the least variable factor; and in disposing armor all practice agrees that the turrets and engines receive the greatest protection. But how to distribute the total available weight of armor gives rise to varieties of practice which find their reflection in similar variety in the sizes and numbers of the rapid-fire guns, to whose penetrative force there is a corresponding thickness of armor. For example, two battle-ships now building for the United States navy have four thirteen-inch guns in turrets, and in broadside fourteen five-inch, twenty six-pounder, and six one-pounder rapid-fire guns; between the two classes they have four eight-inch guns, also mounted in smaller turrets, superimposed on the main turrets. A ship since designed will have the same thirteen-inch gun fire, but in place of the eight-inch and five-inch will have fourteen six-inch rapid-fire guns. An expert officer, discussing these, says: “In the former the weight of fire per minute is two thousand and fifty pounds on the broadside and five hundred ahead or astern, while with the latter plan it is only one thousand seven hundred and fifty on the broadside and five hundred ahead and astern. But the main objection to the second plan is that the volume of effective fire is enormously diminished by the omission of eight-inch guns. The larger area covered with their armor is fairly safe from the six-inch gun at fighting ranges, whereas the eight-inch projectile at any range, and at even a considerable angle of incidence, will penetrate it.” In the judgment of the present writer the weight of this argument depends upon what is behind the armor the eight-inch only will penetrate. If battery and men, it is strong, if not decisive; if motive power only, not.

HISTORY’S TEACHING AND THE FUTURE

The object of this paper has been not to present an accumulation of details, but to elucidate the principles upon which the details rest. The latter, when correct, are but the application of principles to practice. Subject to the imperfections attendant on all human work, the writer is persuaded that the greatest errors in practice—and especially the lack of homogeneousness which characterizes the present battle-ships—arise chiefly from the failure to refer back to principles. Until war has given us the abundant experience which led our predecessors to the broadside seventy-four as the rule, with occasional exceptions, we must depend upon reasoning alone for the solution of our problems; and the reasoner keeps within the limits of safety only by constant reference to fundamental facts.

The one experience of war which ships really contemporary have had was in the battle of the Yalu. Its teachings lose some value from the fact that the well-drilled Japanese used their weapons to advantage, while the Chinese were ill trained; still, some fair inferences can be made. The Japanese had a great many rapid-fire guns, with few very heavy ones, and their vessels were not battle-ships properly so-called. The Chinese, besides other vessels, had two battle-ships with heavy armor and heavy guns. Victory remained with the Japanese. In the opinion of the writer two probable conclusions can be reached: That rapid-fire guns in due proportion to the entire battery will beat down a ship dependent mainly upon turret guns; that is, between two ships whose batteries are alike the issue of the contest will depend upon the one or the other gaining first a predominance of rapid fire. That done, the turret guns of the predominant ship will give the final blows to the engines and turrets of the other, whose own turret guns cannot be used with the necessary deliberation under the preponderant storm of projectiles now turned upon them. The other conclusion, even more certain than the first, is that rapid-fire guns alone, while they may determine an action, cannot make it decisive. Despite the well-established superiority of the Japanese rapid fire in that action, the Chinese battle-ships, though overborne, were not taken. Their heaviest armor being unpierced, the engines and turret guns remained effective, and they withdrew unmolested.

BATTLE-SHIPS THAT ARE TOO LARGE

The battle-ship constituted as described remains for the present the fighting ship upon which the issues of war will depend. The type is accepted by all the leading naval states, though with considerable variations in size. As regards the latter feature, the writer believes that the enormous tonnage recently given is excessive, and that the reasons which support it, too numerous and various to be enumerated at length, have the following fundamental fault: they look too much to the development of the individual ship and too little to the fact that the prime requisite of the battle-ship is facility for co-operating with other ships of its own type—facility in manoeuvring together, facility in massing, facility also in subdividing when occasion demands. It may be remarked, too, that the increase of size has gone much more to increase of defensive power than of offensive—a result so contrary to the universal teachings of war as of itself to suggest pausing. Does the present hold out any probabilities of important changes in the near future, of revolutionary changes? No. For twenty-five or thirty years now we have been expecting from the ram and from the torpedo results which would displace the gun from its supremacy of centuries. Those results, however, are not yet visible. No one disputes the tremendous effects of the ram and of the torpedo when successfully used; but I believe I am correct in saying that the great preponderance of professional opinion does not attribute to them a certainty, or an approach to certainty, impairing the predominance of the gun. This is not the conclusion of mere conservation in a profession naturally conservative. The fluctuations of professional opinion have been sufficiently marked and the matter sufficiently argued to dispose of that contention. Nor is this supremacy of the gun probably a transient matter, liable to pass away with improvements greater than those of the last quarter of a century. The advantage of the gun depends upon conditions probably permanent—upon its greater range, its greater accuracy, its greater rapidity. The individual effect of each shot may be less than that of a torpedo or of a ram thrust; but, as was said in comparing very heavy guns with rapid fire, the probability of many hits prevails over the possibilities of one great blow.

THE GUN AND THE TORPEDO

In none of these features is either of the other weapons likely to overtake the gun. The torpedo relies mainly upon stealth, the ram mainly upon a happy chance for effective use. Both stealth and chance have their place in war; stratagem and readiness, each in place, may contribute much. But the decisive issues of war depend upon the handling of masses with celerity and precision, according to certain general principles of recognized universality. Afloat, such massed force, to be wielded accurately and rapidly, must consist of units not too numerous because of their smallness—as torpedo craft would be—nor too unwieldy because of their size. We may not be able to determine yet, in advance of prolonged experience of war, just what the happy mean may be corresponding in principle to the old seventy-four, but we may be reasonably sure that it will be somewhere in the ranks of the present battle-ships; and that in the range, accuracy and rapidity of their gun-fire—especially when acting in fleets—will be found a protection which the small vessels that rely upon the torpedo or ram alone will not be able to overcome, though they may in rare instances elude.

Concerning the frigates and sloops of our predecessors, their place is now taken, and their duties will be done, by the classes of vessel known generically as cruisers, protected or unprotected. The protection, the defensive element of strength, has reference mainly to the engines, to the motive power. The battery, the offensive factor, tends upon the whole to revert more and more to the development of fire, to utilizing the length of the vessel by multiplying the number of guns and diminishing their individual size; and the tendency is increased by the fact that, as such ships are expected to fight only vessels of their own kind, their probable target is penetrable by light guns. Speed is the great element in the efficiency of cruisers, and whatever the speed in smooth water, a great advantage inures to larger ships in heavy winds and seas. As for “armored” cruisers, of which there are many, they belong rather to the class of battle-ships than of cruisers. Whatever the advantages of the particular ships, the name suggests a regrettable confusion of purpose, and, in practice, a still more regrettable departure from homogeneity.

A.T. Mahan.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page