In the conditions of naval warfare the century now closed has seen a revolution unparalleled in the rapidity of the transition and equalled in degree only by the changes which followed the general introduction of cannon and the abandonment of oars in favor of sails for the propulsion of ships of war. The latter step was consequent, ultimately, upon the discovery of the New World and of the sea-passage to India by the Cape of Good Hope. The voyage to those distant regions was too long and the remoteness from ports of refuge too great for rowing galleys, a class of vessels whose construction unfitted them for developing great size and for contending with heavy weather. The change of motive power made possible and entailed a different disposition of the fighting power, the main battery weight of ships being transferred from the bows and sterns—end-on fire—to the broadsides. The combination of these two new factors caused ships and fleets necessarily to be fought in a different manner from formerly—entailed, to use the technical word, new tactics. The innovations thus briefly mentioned, though equally radical, were much more gradual in their progress than those witnessed by our generation. The latter have occurred not merely within the lifetime but within the memory of many who are still among us. They are embraced, easily and entirely, within the reign of Queen Victoria. It has been said, plausibly, that if a BIRD’S-EYE VIEW OF THE TRANSITIONA few dates will illustrate the swiftness of our recent transformations. In 1838, when the French navy reduced San Juan de Ulloa, the principal defence of Vera Cruz, and in 1840, in the British attack upon Acre, the fighting power was wholly in sailing ships such as had fought at Trafalgar thirty-five years before. Two small paddle steamers towed the French frigate into position, while the four British vessels of the same type contributed only a desultory addition to the broadsides of seven sailing ships of the line, which compelled the surrender of the fortress. The first screw ship of the line in the British navy was launched in 1852; the last sailing ship of that class went out of commission in 1860. All alike, the ships of Vera Cruz and of Acre, and their short-reigning successors, the steam frigates and ships of the line, are now as much things of the past, It is almost needless to remark that this seemingly abrupt transition is but one incident in the startling progress made during the century in all the arts of peace as of war. Like the others, it is due to an intellectual activity, greater probably than that of our predecessors, and directed since the peace of 1815 less upon external political interests than upon scientific investigation, and upon the application of the results to the improvement of processes of every kind. The changes in conception and in development of the instruments of naval warfare result from the increased power of dealing with refractory material which has been acquired by scientific and practical men in the laboratory and the workshop. Thus viewed, though so rapid in realization as to amount to a revolution, not only is the change seen to be the outcome of a long, though silent preparation, but it is brought also into its due relation to the general movement of the age, and found to share its special characteristics. Our ancestors of the eighteenth century had their own problems, noble and absorbing, but chiefly political in character. While new worlds were being gathered into the embrace of European civilization, the leading powers struggling among themselves for pre-eminence in the work, and while the harvest was ripening for the French Revolution, science crept forward, The object of the present article is to describe the type of war vessel prevalent universally among civilized nations when the nineteenth century opened, and to trace historically the sequence of ideas and of facts which have resulted in the type whose general acceptance is seen now in the practice of the chief naval states. SAILING SHIPS AND BROADSIDE BATTERIESWhen the nineteenth century began, the ships that contended for the control of the sea were, and for two centuries had been, sailing ships with broadside batteries: the guns, that is, were distributed along both sides from the bow to the stern on one, two, three, or four decks. From the largest down, all were of this type until the very smallest class was reached. In the latter, which could scarcely be considered fighting ships, the gun power was at times concentrated into a single piece, which swept from side to side round the horizon, thus anticipating partially the modern turreted ironclad with its concentrated revolving battery. The arrangement of guns in broadside involved anomalies and inconveniences which seem most singular when first noted. A ship in chase of another, for instance, had no guns which threw straight ahead. If it were wished to fire, in order to cripple the fleeing enemy, it was necessary to deflect from the course; and in order to bring most of the guns on one side into play the vessel had to swing round nearly at right angles to the direction of pursuit. This, of course, lost both time and ground. Broadside fire—the distribution of guns in broadside—rests, however, upon an unchangeable condition, which controls now as it did a century ago. Ships then were from three to four times as long as they were broad; DISAPPEARANCE OF BOW FIREThe adoption of broadside batteries followed, therefore, necessarily upon increase of size and consequent length, but not upon that only. It is instructive to observe that the sailing fighting ship was derived, in part, at least, from the galley, and its resemblance in form to the latter is traceable for at least a century after the general disuse of the oar. As the galley, however, was small, it could concentrate its fire advantageously in one or two pieces, for which small number the cross- For all these reasons, bow fire disappeared and broadside fire prevailed; but the fundamental one to be remembered is the greater development of fire conferred by greater length. All ships—except the very small ones known as schooners, cutters, and gunboats—were broadside vessels, moved by canvas which was carried commonly on two or three masts; but into the particulars of the sails it is presumed readers will not care to enter. Being thus homogeneous in general characteristics, the ships of this era were divided commonly into three principal classes, each of which had subdivisions; but it was recognized then, as it is now in theory though too little in practice, that such multiplication of species is harmful, and our forerunners, by a process of gradual elimination, had settled down upon certain clearly defined medium types. The smallest of the three principal classes of fighting THE FRIGATE AND HER GUNSThis latter celebrated and favorite class of ship stood next in order of power above the corvette, with which it might also be said to have blended; for although in the frigate class there were two, or at the most three, rates that predominated vastly in numbers over all the rest, yet the name covered many differing degrees of force. The distinguishing feature of the frigate was that it carried one complete row of guns upon a covered deck—upon a deck, that is, which had another deck over it. On this upper or spar deck there were also guns—more or fewer—but lighter in weight than those Being such as here described, the frigate was essentially, though not exclusively, the appendage of a fleet of line-of-battle ships. Wars are decided not by commerce destroying nor by raids, however vexatious, but by fleets and armies, by great organized masses—that is, by crushing, not by harassment. But ships of the line, to perform their function, must keep together, both when cruising and when on the field of battle, in order to put forth their strength in combination. The innumerable detached services that must be discharged for every great organized force need for a fleet to be done by vessels of inferior strength, yet so strong that they cannot be intercepted or driven off lightly by every whipper-snapper of an armed ship that comes along. Moreover, a fact not always realized, speed—speed to hasten on a mission, to overtake a foe, or to escape pursuit—depends upon size, masts that can carry sail and hold way amid heavy seas. Hence the frigate, not the lighter sloop, was indicated for the momentous duties upon which depended the intelligence and the communications of the fleet. Such leading considerations are needed to DUTIES OF THE FRIGATEThe truth of this statement will be evident from a brief mention of the duties frigates actually used to perform. While attending the fleet, not merely a part of it, the frigates were thrown out far in advance and on each side, as cavalry on land scours the country towards or through which the army advances. The distance to which they would be thus detached would sometimes amount to one hundred or two hundred miles, and the absence to days, rejoining being assured by the assignment of a rendezvous, or by an adequate knowledge of the admiral’s intended movements. It will be recognized that when thus alone frigates might meet equal or superior forces, to resist or to escape from which both strength and speed were needed. An extreme and particular case of such service was the watching of an enemy’s port by one or more frigates, when they had to keep close to the entrance, although a fleet might be within. Again, frigates were placed in certain central positions, rendezvous known only to the superior officers, where they cruised steadily, having information as to the whereabouts of the fleet, or instructions for expected vessels. They were there centres of intelligence, round which the movements of the whole body revolved. For such offices it is evident there were wanted a strength and a weight which the corvette did not have. A corvette would make poor work of towing a heavy ship, and could not carry as surely the sail needed to maintain a position. At the same time it should be observed that excess of size above the requirements stated should be exceptional. In the opinion of the writer the forty-four-gun frigate in her day possessed a fighting force and a weight of body in excess of that required EARLY SHIPS OF THE LINEIn the fleet-ship, likewise the ship of the line, as the opening century styled the class of vessel known in the closing days as the battle-ship, our predecessors had reached a mean conclusion. The line-of-battle ship, or the ship of the line, as more usually called, differed from the frigate generically, in that it had two or more covered decks. There were one or two cases of ships with four decks, but, as a rule, three were the extreme; and ships of the line were roughly classed as two or three deckers. Under these heads two-deckers carried in their two centuries of history from fifty to eighty-four guns; three-deckers from ninety to one hundred and twenty. The increase in number of guns, resulting, as it did, from increase of size, was not the sole gain of ships of the line. The bigger ships got, the heavier were their timbers, the thicker their planking, the more impenetrable, therefore, their sides. There was a gain, in short, of defensive as well as offensive strength, analogous to the protection given by armor. “As the enemy’s ships were big,” wrote a renowned British admiral, “they took a great deal of drubbing.” Between the great extremes of strength indicated by ADVANTAGES OF THE SEVENTY-FOURSThe two-decked ship was superior in speed and in handiness, and for that reason, even when acting singly, she could put forth such power as she possessed more quickly and more certainly. But these qualities were most conspicuously valuable when ship had to act with ship. The great secret of military success, concerted action in masses, was in the hands of the two-decked ship, because in her were united to the highest point individual power and facility for combined action. And this was true not only of two-deckers in general, but of the particular species known as the seventy-four-gun ship. Ships below that rate lacked individual fighting It may be asked naturally, why, then, were there any ships bigger or smaller than this favored type? For smaller, the answer is that short ships of lighter draught are best suited for shoal or intricate navigation. The shoals of Holland forbade heavy ships to the Dutch navy, materially reducing its fighting strength. Before France entered our Revolutionary struggle the British sent only sixty-fours to operate upon our comparatively shallow coasts and bars. As regards bigger ships, they were useful exceptionally, as were forty-four-gun frigates, and for the following reason: Every line of battle has three particularly dangerous points—the centre, because there the line, if pierced, divides into the two smaller fragments; and the flanks, or ends, because the extremities are supported less easily by the rest of the force than the centre is, one extremity being farther from the other than the centre is from either. Such local weakness could not be remedied by the use of two ships, for, if the line were properly closed, one of them could fire at the enemy only through or over the other. The sole way of giving the strength there required was by concentrating it into individual ships, either by putting on the additional battery, which gives a three-decker, BATTERIES SEVENTY-FIVE YEARS AGOWhen the nineteenth century began, batteries of ships were composed of two principal classes of guns: the long gun and the short gun, or carronade. The difference between these lay in the way the weight of metal allowed for each was utilized. The long gun, as its name implies, was comparatively long and thick, and threw a small ball with a heavy charge of powder. The ball, therefore, flew swiftly, and had a long range. A carronade of the same weight was short and comparatively thin, could use only a small charge of powder, lest it burst, and threw a large ball. Its shot, therefore, moved slowly and had short range. Fired at a target—a ship’s side—within range of both guns, the shot from the long gun penetrated quickly, the wood had not time to splinter badly, and a clean hole was the result. The carronade’s shot, on the contrary, being both larger and slower, penetrated with difficulty, all the surrounding wood felt the strain and broke up into splinters, leaving a large jagged hole, if the shot got through. These effects were called respectively piercing and smashing, and are reproduced, in measure, upon targets representing the side of a modern ironclad. They have been likened familiarly to the effect of a pistol-ball and of a stone upon a window pane: the one goes through clean, the other crashes. At the period in question guns of all sorts fired only non-explosive projectiles, solid or hollow shot. The destructive shell of the present day was used only by pieces called mortars, in vertical firing, which will be spoken of farther on. Such were not mounted on the ships of the fleet generally, nor used against shipping, except when packed in a small harbor. They did not enter into naval warfare proper. The ram and the torpedo of present warfare were unknown. On the other hand, there was practised a form of fighting which is thought now to have disappeared forever, namely, boarding and fighting hand-to-hand on the deck. Even then, however, boarding did not decide the main issue of a sea-fight, except occasionally in very small vessels. The deck of a large and fresh ship was not to be reached easily. Boarding was like the cavalry charge that routs a wavering line; the ship had been beaten at the guns before it occurred. The real fighting was done by the long guns and carronades disposed in the broadsides. Besides rapidity and precision of fire, always invaluable, the two opponents sought advantage of position by manoeuvring. They closed, or they kept apart, according to their understanding of the other’s weight and kind of battery. Each tried, when possible, to lie across the bow or the stern of the enemy, for then his guns ranged from end BRITISH AND FRENCH STYLES OF FIGHTINGBesides these recognized advantages of position, there was also a question upon what part of the enemy the fire should be directed. In this there were two principal schools of tactics, one of which aimed at the hull, to break down the fire of the hostile ship and destroy her fighting men, while the other sought, by pointing higher, to cut away the sails, rigging, and masts, rendering the foe helpless. The latter, in general, was the policy of the French; the former, and, it may be affirmed, the more surely successful, was the practice of the British. The two schools find their counterpart in the tactical considerations which now affect the question of rapid-fire and of heavy guns, each of which has its appropriate target, covering in the latter case the motive power, in the former the personnel. These three leading classes of vessels, with their functions, armaments, and tactics of the single ship, as described, performed in their day and during the great maritime contests of two centuries all the duties that at any time can be required of a maritime fighting organization. By them the control of the sea in the largest sense was disputed and was determined; by them commerce was attacked, and by them it was protected. They themselves have passed away, but the military factors remain the same. The mastery of the sea and the control THEY HAD THEIR BREAK-DOWNS THEN, TOOThere should be added for the general public the caution that the difficulties, the imperfections, and the frequent halting state of ships-of-war in commission for sea service at the present day are no new things. To the naval historian familiar with the correspondence of the past they are the inevitable attendants of all government action, wherein the most economical methods are always dominated, historically, by considerations of expediency which are political in character. The necessity of keeping the public in good-humor, and of not laying open points upon which opposition can enlarge, induces apparent economies, which sacrifice not only economy, but the best results. This is a great evil, as yet apparently inseparable from public enterprises as distinguished from private ones. If any one supposes that the ships with which Great Britain overthrew Napoleon, and with which Nelson and his contemporaries won their as yet unparalleled victories, were The succession of cause and effect which has produced the present ship-of-war will be traced in rapid outline, in order to leave as much room as may be for the description of the essential feature of the ship herself as she now exists. Two chief factors concur to a ship-of-war—motive power and fighting power. The displacement of sails by engines, and the progressive development of the latter, are features of the general progress of the century. The engines of a ship-of-war are differentiated from those of merchant ships chiefly by the necessity of protection. This affects their design, which must be subordinated to the requirement of being as far as possible below the water-line. The further great protection now afforded is incident rather to the use and development of armor as a part of the fighting power. CONTEST OF ARMOR AND PROJECTILEThe modern contest began with the introduction of horizontal shell fire in the third decade of the century. This term must be explained. It has been said that all ships’ guns up to 1815 threw non-explosive projectiles. In practice this is true; although Nelson alludes to certain shell supplied to him for trial, which he was unwilling to use because he wished not to burn his prizes, but to take them alive. A shell is a hollow projectile filled with powder, the idea of which is that upon reaching the enemy it will burst into several pieces, each capable of killing a man, and the flame not impossibly setting woodwork on fire. It was necessary that the powder within should not explode from the combustion of the cartridge of the gun, for if it did its force, combined with the latter, might burst the gun; yet the process that should result in bursting must begin at that moment or else it would not take place at all. This difficulty was met by a short column of hard, compressed powder called the fuse, which extended from the outside to the inside of the shell. The outer end was inflamed by the charge of the gun, but from its density it burned slowly, so that the charge of the shell was not enkindled for five, ten, or more seconds. This expedient was in use over a century ago; but owing to imperfections of manufacture, no certainty was attained that the fuse might not be driven in or broken by the force of the discharge, or the shell itself be cracked and so explode prematurely. The destructiveness of shell from ordinary guns was so obvious, especially for forts to use against wooden ships, that the difficulties were gradually overcome, and horizontal shell fire was introduced soon after the cessation of wars allowed men time for thought and change. But although the idea was accepted and the fact realized, practice changed slowly, as it tends to do in the absence of emergency. In the attack on Vera Cruz, in 1848, Farragut was present, and was greatly impressed, as with a novelty, by the effect of what he called the “shell shot,” a hybrid term which aptly expresses the transition state of men’s minds at the time. I remember an officer who entered the navy in 1840 telling me the respectful awe and distrust with which his superiors then regarded the new weapon, a very few of which for each gun were supplied tentatively. Ten years more, however, saw a great change, and in 1853 the attack of the Russian squadron of wooden sailing-ships upon the Turkish vessels in the Bay of Sinope gave an object-lesson that aroused the naval world to what wooden ships must expect from horizontal shell fire. In a few minutes three out of seven Turkish frigates were in flames; while of nine sailing-ships and two steamers only one of the latter escaped. HORIZONTAL SHELL FIREThe Crimean War followed quickly, and in 1854 the wooden steamships of the line of the allies, vessels identical Horizontal shell fire had called for iron armor, and the two, as opposing factors, were now established in the recognition of men. The contest between the two sums up the progression and the fluctuations of military ideas which have resulted in the battle-ship of to-day, which, as the fleet-ship, remains the dominant factor in naval warfare, not only in actual fact but in present probability. From the first feeble beginnings at Kinburn to the present time, although the strife has waxed greatly in degree, it remains unchanged in principle and in kind. To exclude the shell, because, starting as one projectile, it became many after penetration, in what does it differ from excluding the rapid-fire gun, whose projectiles are many from the first, and penetrate singly? There occurred, however, one singular development, an aberration from the normal line of advance, the chief manifestation of which, from local and temporary conditions, was in our own country. This was the transient predominance of the monitor type and idea; the iron-clad vessel, with very few very heavy guns, mounted in one or two circular revolving turrets, protected by very heavy armor. The monitor type embodied two ideas. The first was the extreme of defensive power, owing to the smallness of the target and the thickness of its armor—the This was the infancy period of the iron-clad ship. The race between guns and armor was barely begun, and manufacturing processes still were crude. As these improved, with astounding rapidity, the successful production of rifled cannon of ever-increasing dimensions and penetrative force imposed an increased armor protection, which at the first was obtained chiefly by an increase of thickness, i.e., of weight. As guns and armor got heavier, ships had to be bigger to carry them, and, if bigger, of course longer. But the monitor idea, admirably suited to small ships, had now fast hold of men’s minds—in England especially, for the United THE COMING OF THE MONITORThe first monitor has been called an epoch-making ship, for she began an era. The Inflexible was also epoch-making, for she closed the era of the monitor pure and simple. Upon a development of three hundred and twenty feet of length she carried only four guns, of which it is not too much to say that their power was very far in excess of almost all targets that could be opposed to them. If, indeed, her possible opponents could have carried such an armor as her own all over their exposed surface, her guns would have been no heavier than needed, and the fewness must be accepted; but this was not the case. Like herself, ships of twelve thousand tons must have a penetrable target far exceeding in surface Under artillery conditions, then, this reply was plausible, though it soon ceased to be so. Even then, however, it was true that a ship with only four guns that fired very slowly, and with such an exposed surface, was liable to serious injury from a nimble antagonist firing many guns rapidly. The defensive weakness of the Inflexible is apparent; her offensive power, great as in the aggregate it was, was much impaired by lack of proper development, by undue compression into very few guns, the larger part of whose effect was wasted, except in the rare instances when they struck a target not often to be encountered. But this was not the only deduction from her strength through the excess of concentration. Very large guns fire very slowly, yet they are as subject to inaccuracy from the motion of the ship as is the smallest piece. Where the target is missed, it is immaterial whether the shot weighs a ton or a pound; and a gun that fires ten times to another’s once has ten times the chance of hitting. It is evident, therefore, taking the Inflexible as she was, that a ship of the same weight and length with ten guns in broadside—twenty CRITICISM OF THE INFLEXIBLEWhile the Inflexible was building there was born the idea whose present maturity enforces the abandonment of the pure monitor, except for vessels comparatively small and for special purposes. Machine guns, the Gatling, and the mitrailleuse were already known, and the principle was being applied to throw projectiles of a pound weight and over, which were automatically loaded and fired, requiring only to be aimed. Upon these followed the rapid-fire gun, of weight greatly exceeding theirs, the principle of which may be said to be that it is loaded by hand, but with ammunition so prepared and mechanism for loading so simple and expeditious as to permit a rate of firing heretofore unparalleled. The highest extension of this principle is reached in the five-inch gun, up to which size the cartridge and the projectile make a single package called fixed ammunition, which is placed by one motion. Together they weigh ninety-five pounds, about as much as an average man can handle in a seaway, the projectile itself weighing fifty pounds. There are, it is true, six-inch rapid-fire guns, but in them the cartridge and shell are placed separately, and it is questionable whether such increase of effect, through greater weight, as they give is not gained at a loss of due rapidity. The Inflexible exemplified in an extreme form the elements of offensive and defensive strength and weakness. In the strife of guns with armor, therefore, increase of power in guns, outstripping continually the increase of resistance in armor, called for bigger ships to bear the increased armor weight, till the latter could not possibly be placed all over the ship’s body. Hence the exposed target, upon which plays the smaller battery of rapid-fire guns. To comprehend fundamentally the subsequent development, we must recur to the rudimentary idea that a ship of war possesses two chief factors, motive force and fighting force, the latter being composed of guns mainly and of men. Corresponding to these two chief powers there were of old, and there are still, two vulnerable elements, two targets, upon one or the other of which hostile effort logically and practically must be directed. A century ago the French, aiming at sails and spars, sought the destruction of the motive force; the British directed their fire upon the guns and men. In strict BATTLE-SHIPS OF THIS DAYThe logical outcome of these leading ideas is realized in the present battle-ships as follows: There are two turrets, protected by armor, the thickest that can be given them, considering the other weights the ship has to carry, and of the highest resisting quality that processes of manufacture can develop. Armor of similar character and weight protects the sides about the engines. In each turret are guns whose power corresponds to the armor which protects them. Their proper aim—not, of course, always reached—is the heavy armored part of the enemy, chiefly the engines, the motive power. When they strike outside of this target, as often must happen, there is excess of blow, and consequent waste. The turrets are separated, fore and aft, by a distance as great as possible, to minimize the danger of a single shot or any other local incident disabling both. The fact that the ends of ships, being comparatively sharp, are less waterborne and cannot support extreme weights, chiefly limits this severance of the turrets. Between the two, and occasionally before or abaft them, is distributed the broadside rapid fire of the ship, which in its development is in contradistinction to the compressed fire of the monitor. This fire is rapid because the guns are many and because individually they can fire fast. Thus, the turret gun, twelve or thirteen inch in bore, fires once in five minutes; the five-inch rapid-fire gun thrice in one minute. The rapid-fire battery aims outside of the heaviest armor. When it strikes that, unless it chance to enter a gun port, its effect is lost; but as much the The reader will comprehend that in the application of these leading ideas there is considerable variety in detail. The two turrets may be looked upon at present as the least variable factor; and in disposing armor all practice agrees that the turrets and engines receive the greatest protection. But how to distribute the total available weight of armor gives rise to varieties of practice which find their reflection in similar variety in the sizes and numbers of the rapid-fire guns, to whose penetrative force there is a corresponding thickness of armor. For example, two battle-ships now building for the United States navy have four thirteen-inch guns in turrets, and in broadside fourteen five-inch, twenty six-pounder, and six one-pounder rapid-fire guns; between the two classes they have four eight-inch guns, also mounted in smaller turrets, superimposed on the main turrets. A ship since designed will have the same thirteen-inch gun fire, but in place of the eight-inch and five-inch will have fourteen six-inch rapid-fire guns. An expert officer, discussing these, says: “In the former the weight of fire per minute is two thousand and fifty pounds on the broadside and five hundred ahead or astern, while with the latter plan it is only one thousand seven hundred and fifty on the broadside and five hundred ahead and astern. But the main objection to the second plan is that the volume of effective fire is enormously diminished by the omission of eight-inch guns. The larger area covered with their armor is fairly safe from the six-inch gun at fighting ranges, whereas the eight-inch projectile at any range, and at even a considerable angle of HISTORY’S TEACHING AND THE FUTUREThe object of this paper has been not to present an accumulation of details, but to elucidate the principles upon which the details rest. The latter, when correct, are but the application of principles to practice. Subject to the imperfections attendant on all human work, the writer is persuaded that the greatest errors in practice—and especially the lack of homogeneousness which characterizes the present battle-ships—arise chiefly from the failure to refer back to principles. Until war has given us the abundant experience which led our predecessors to the broadside seventy-four as the rule, with occasional exceptions, we must depend upon reasoning alone for the solution of our problems; and the reasoner keeps within the limits of safety only by constant reference to fundamental facts. The one experience of war which ships really contemporary have had was in the battle of the Yalu. Its teachings lose some value from the fact that the well-drilled Japanese used their weapons to advantage, while the Chinese were ill trained; still, some fair inferences can be made. The Japanese had a great many rapid-fire guns, with few very heavy ones, and their vessels were not battle-ships properly so-called. The Chinese, besides other vessels, had two battle-ships with heavy armor and heavy guns. Victory remained with the Japanese. In the opinion of the writer two probable conclusions can be reached: That rapid-fire guns in due proportion to the entire battery will beat down a BATTLE-SHIPS THAT ARE TOO LARGEThe battle-ship constituted as described remains for the present the fighting ship upon which the issues of war will depend. The type is accepted by all the leading naval states, though with considerable variations in size. As regards the latter feature, the writer believes that the enormous tonnage recently given is excessive, and that the reasons which support it, too numerous and various to be enumerated at length, have the following fundamental fault: they look too much to the development of the individual ship and too little to the fact that the prime requisite of the battle-ship is facility for co-operating with other ships of its own type—facility in manoeuvring together, facility in massing, facility also in subdividing when occasion demands. It may be remarked, too, that the increase of size has gone much more to increase of defensive power than of offensive—a result so contrary to the universal teachings of war as of itself to suggest pausing. THE GUN AND THE TORPEDOIn none of these features is either of the other weapons likely to overtake the gun. The torpedo relies mainly upon stealth, the ram mainly upon a happy chance for effective use. Both stealth and chance have their place in war; stratagem and readiness, each in place, may contribute much. But the decisive issues of war depend upon the handling of masses with celerity and precision, according to certain general principles of recognized Concerning the frigates and sloops of our predecessors, their place is now taken, and their duties will be done, by the classes of vessel known generically as cruisers, protected or unprotected. The protection, the defensive element of strength, has reference mainly to the engines, to the motive power. The battery, the offensive factor, tends upon the whole to revert more and more to the development of fire, to utilizing the length of the vessel by multiplying the number of guns and diminishing their individual size; and the tendency is increased by the fact that, as such ships are expected to fight only vessels of their own kind, their probable target is penetrable by light guns. Speed is the great element in the efficiency of cruisers, and whatever the speed in smooth water, a great advantage inures to larger ships in heavy winds and seas. As for “armored” cruisers, of which there are many, they belong rather to the class of battle-ships than of cruisers. Whatever the advantages of the particular ships, the name suggests a regrettable confusion of purpose, and, in practice, a still more regrettable departure from homogeneity. A.T. Mahan. |