The great importance which electricity has attained in many departments of human activity is so constantly evident that we have difficulty in realizing how short is the time which has been occupied in its development. The latter half of the nineteenth century must ever remain memorable, not only for the great advances in nearly all the useful arts, but for the peculiarly rapid electric progress, and the profound effect which it has had upon the lives and business of the people. In the preceding century we find no evidences of the application of electricity to any useful purpose. Few of the more important principles of the science were then known. Franklin’s invention of the lightning-rod was not intended to utilize electric force, but to guard life and property from the perils of the thunder-storm. The numerous instructive experiments in frictional electricity, the first-known form of electric manifestation except lightning, made clear certain principles, such as conduction and insulation, and served to distinguish the two opposite electric conditions known as positive and negative. Franklin’s kite experiment confirmed the long-suspected identity of lightning and electric sparks. It was not, however, until the discovery by Alexander Volta, in 1799, of his pile, or battery, that electricity could take its place as an agent of practical value. Volta, when he made this great discovery, was following the work of Galvani, begun in 1786. But Galvani in his experiments mistook the effect for the cause, and so The simplest facts of electro-magnetism, upon which much of the later electrical developments depend, remained entirely unknown until near the close of the first quarter of the nineteenth century. Magnetism itself, as exemplified in loadstone or in magnetized iron or steel, had long before been consistently studied by Dr. Gilbert, of Colchester, England, and in 1600 his great work, De Magnete, was published. It is a first example, and an excellent one, too, of the application of the inductive method, so fruitful in after-years. The restraints which a superstitious age had imposed upon nature study were gradually removed, and at the beginning of the century just past occasional decided encouragement began to be given to physical research. It was this condition which put into the hands of Humphry Davy, of the Royal Institution, in London, at the opening of the century, a voltaic battery of some 250 pairs of plates. With this a remarkably fruitful era of electric discovery began. In 1802 Davy first showed the electric arc or “arch” on a small scale between Davy probably never imagined that his brilliant experiment would soon play so important a part in the future lighting of the world. He may never have regarded it as of any practical value. In fact, many years elapsed before any further attempt was made to utilize the light of the electric arc. The reason for this is not difficult to discover. The batteries in existence were crude and gave only their full power for a very short time after the circuit was closed. They were subject to the very serious defect of rapid polarization, whereby the activity was at once reduced. A long period elapsed before this defect was removed. Davy in his experiments had also noted the very intense heat of the electric arc, and found that but few substances The conduction of electricity along wires naturally led to efforts to employ it in signalling. As early as 1774 attempts were made by Le Sage, of Geneva, to apply frictional electricity to telegraphy. His work was followed before the close of the century by other similar proposals. Volta’s discovery soon gave a renewed impetus to these efforts. It was easy enough to stop and start a current in a line of wire connecting two points, but something more than that was requisite. A good receiver, or means for recognizing the presence or absence of current in the wire or circuit, did not exist. The art had to wait for the discovery of the effects of electric current upon magnets and the production of magnetism by such currents. Curiously, even in 1802 the fact that a wire conveying a current would deflect a compass needle was observed by Romagnosi, of Trente, but it was afterwards forgotten, and not until 1819 was any real advance made. It was then that Oersted, of Copenhagen, showed that a magnet tends to set itself at right angles to the wire conveying current and that the direction of turning depends on the direction of the current. The study of the magnetic effects of electric currents by Arago, AmpÈre, and the production of the electro-magnet by Sturgeon, together with the very valuable work of Henry and others, made possible the completion of the electric telegraph. This was done by Morse and Vail in America, and almost simultaneously by workers abroad, but, before Morse had entered the field, Professor Joseph Henry had exemplified by experiments the working of electric signalling by electro-magnets over a short line. It Improvement in this field has by no means ceased, and new systems for rapid transmission are yet being worked out. The object is to enlarge the carrying capacity of existing lines connecting large centres of population. The names of Wheatstone, Stearns, Edison, and Delaney are prominent in connection with this work. For use in telegraphy the originally crude forms of voltaic battery, such as Davy used, were replaced by the more perfect types such as the constant battery of For this service they had invented an arc lamp involving what is known as the differential principle, afterwards applied so extensively to arc lamps. The length of the arc or the distance between the carbons of the lamp was controlled with great nicety, and the light thus rendered very steady. Even as late as 1875 batteries were occasionally used to work single electric arc lamps for public exhibitions, or for demonstration Soon after Faraday’s discoveries in magneto-electricity attempts were made to construct generators of electricity from power. But the machines were small, crude, and imperfect, and the results necessarily meagre. Pixii, in Paris, one year after Faraday’s discovery was announced, made a machine which embodied in its construction a simple commutator for giving the currents a single direction of flow. This is the prototype of the commutators now found on what are called continuous-current dynamos. After Pixii followed Saxton, Clarke, Wheatstone and Cooke, Estohrer, and others, but not until 1854 was any very notable improvement made or suggested. In that year Soren Hjorth, of Copenhagen, described in a patent specification the principle of causing the electric currents generated to traverse coils of wire so disposed as to reinforce the magnetic field of the machine itself. A year subsequently the same idea was again more clearly set out by Hjorth. This is the principle of the modern self-exciting dynamo, the field magnets of which, very weak at the start, are built up or strengthened by the currents from the armature or revolving part of the machine in which power is consumed to produce electricity. In 1856 Dr. Werner Siemens, of Berlin, well known as a great pioneer in the electric arts, brought out the Siemens armature, an innovation more valuable than any other made up to that time. This was subsequently used in the powerful machines of Wilde and Ladd. It still survives in magneto call-bell apparatus for such work The decade between 1860 and 1870 opened a new era in the construction and working of dynamo machines and motors. It is notable for two advances of very great value and importance. Dr. Paccinotti, of Florence, in 1860, described a machine by which true continuous currents resembling battery currents could be obtained. Up to that time machines gave either rapidly alternating or fluctuating currents, not steady currents in one direction. The Paccinotti construction, in modified forms, is now almost universally employed in dynamo machines, and even where the form is now quite different the Paccinotti type has been at least the forerunner, and has undergone modifications to suit special ends in view. Briefly, Paccinotti made his armature of a ring of iron with iron projections between which the coils of insulated wire were wound. Although full descriptions of Paccinotti’s ring armature and commutator were given out in 1864, his work attracted but little attention until Gramme, in Paris, about 1870, brought out the relatively perfect Gramme machine. In the mean time the other great development of the decade took place. Although Hjorth had, as stated before, put forward the idea that a dynamo generator might itself furnish currents for magnetizing its own magnets, this valuable suggestion was not apparently worked out until 1866, when a machine was constructed for Sir Charles Wheatstone. This appears to have been the first self-exciting machine in existence. Wheatstone read a paper before the Royal Society in February, 1867, “On the Augmentation of the Power of a Magnet by the Reaction thereon of Currents Induced by the Magnet Itself.” This action later became known as the reaction principle in dynamo machines. In modern dynamos and motors the armature, usually constructed of sheet-iron punchings, is a ring with projections as in Paccinotti’s machine, and the coils of wire At the Centennial Exhibition, held at Philadelphia in 1876, but two exhibits of electric-lighting apparatus were to be found. Of these one was the Gramme and the other the Wallace-Farmer exhibit. The Wallace-Farmer dynamo machine is a type now obsolete. It was not a good design, but the Wallace exhibit contained other examples reflecting great credit on this American pioneer in dynamo work. Some of these machines were very similar in construction to later forms which went into very extensive use. The large search-lights occasionally used in night illumination during the exhibitions were operated by the current from Wallace-Farmer machines. The Gramme exhibit was a remarkable exhibit for its time. Though not extensive, it was most instructive. There were found in it a dynamo running an arc lamp; a large machine for electrolytic work, such as electroplating or electrotyping, and, most novel and interesting of all, one Gramme machine driven by power was connected to another by a pair of wires and the second run as a motor. This in turn drove a centrifugal-pump, and raised water which flowed in a small fall or cataract. A year or two previously the Gramme machine had been accidentally found to be as excellent an electric motor as it was a generating dynamo. The crude motors of Jacobi, Froment, Davenport, Page, Vergnes, Gaume, and many others, were thus rendered obsolete at a stroke. The first public demonstration of the working of one Gramme machine by another Here, then, was a foreshadowing of the great electric-power transmission plants of to-day; the suggestion of the electric station furnishing power as well as light, and, to a less degree, the promise of future railways using electric power. Replace the centrifugal pump of this modest exhibit by a turbine wheel, reverse the flow of water so as to cause it to drive the electric motor so that the machine becomes a dynamo, and, in like manner, make of the dynamo a motor, and we exemplify in a simple way recent great enterprises using water-power for the generation of current to be transmitted over lines to distant electric motors or lights. The Centennial Exhibition also marks the beginning—the very birth, it may be said—of an electric invention destined to become, before the close of the century, a most potent factor in human affairs. The speaking telephone of Alexander Graham Bell was there exhibited for the first time to the savants, among whom was the distinguished electrician and scientist Sir William Thomson. For the first time in the history of the world a structure of copper wire and iron spoke to a listening ear. Nay, more, it both listened to the voice of the speaker and repeated the voice at a far-distant point. The instruments were, moreover, the acme of simplicity. Within a year many a boy had constructed a pair of telephones at an expenditure for material of only a few pennies. In its first form the transmitting telephone was the counterpart of the receiver, and they were reversible in function. The transmitter was in reality a minute dynamo driven by the aËrial voice waves; the receiver, a vibratory motor worked by the vibratory currents from the transmitter and reproducing the aËrial motions. This arrangement, most beautiful in theory, was only suited for use on short lines, and was soon afterwards There is no need to dwell here upon the enormous saving of time secured by the telephone and the profound effect its introduction has had upon business and social life. The situation is too palpable. Nevertheless, few users of this wonderful invention realize how much thought and skill have been employed in working out the details of exchange switchboards, of signalling devices, of underground cables and overhead wires, and of the speaking instruments themselves. Few of those who talk between Boston and Chicago know that in doing so they have for the exclusive use of their voices a total of over 1,000,000 pounds of copper wire in the single line. There probably now exist in the United States alone between 75,000 and 100,000 miles of hard-drawn copper wire for long-distance telephone service, and over 150,000 miles of wire in underground conduits. There are upward of three-quarters of a million telephones in the United States, and, including both overhead and underground lines, a total of more than half a million miles of wire. Approximately one thousand million conversations are annually conveyed. The possibility of sub-oceanic telephoning is frequently discussed, but the problem thus far is not solved. It involves grave difficulties, and we may hope that its solution is to be one of the advances which will mark the twentieth century’s progress. The advent of the telephone in 1876 seemed to stimulate Inventors in America were not idle. By the close of 1878, Brush, of Cleveland, had brought out his series system of arc lights, including special dynamos, lamps, etc., and by the middle of 1879 had in operation machines Within a few years of the close of the century this placing of arc lamps in branches from the same mains which supply incandescent lamps became common, and the enclosure of the arc in a partially air-tight globe, a Almost simultaneously with the beginning of the commercial work of arc lighting, Edison, in a successful effort to provide a small electric lamp for general distribution in place of gas, brought to public notice his carbon filament incandescent lamp. A considerable amount of progress had previously been made by various workers in attempting to reduce the volume of light in each lamp and increase the number of lights for a given power expended. Forms of incandescent arc lamps, or semi-incandescent lamps, were tried on a considerable scale abroad, but none have survived. So, also, many attempts to produce a lamp giving light by pure incandescence of solid conductors proved for the most part abortive. Edison himself worked for nearly two years on a lamp based upon the old idea of incandescent platinum strips or wires, but without success. The announcement of this lamp caused a heavy drop in gas shares, long before the problem was really solved by a masterly stroke in his carbon The Edison lamp differed from those which preceded it in the extremely small section of the carbon strip rendered hot by the current, and in the perfection of the vacuum in which it was mounted. The filament was first made of carbonized paper, and afterwards of bamboo carbon. The modern incandescent lamp has for years past been provided with a filament made by a chemical process. The carbon formed is exceedingly homogeneous and of uniform electric resistance. Edison first exhibited his lamp in his laboratory at Menlo Park, New Jersey, in December, 1879; but before it could be properly utilized an enormous amount of work had to be done. His task was not merely the improvement of an art already existing; it was the creation of a new art. Special dynamo machines had to be invented and constructed for working the lamps; switches were needed for connecting and disconnecting lamps and groups of lamps; meters Even the steam-engines for driving the dynamos had to be remodelled and improved for electric work, and ten years of electric lighting development did more towards the refinement and perfection of steam-engines than fifty years preceding. Steadiness of lights meant the preservation of steady speed in the driving machinery. The Pearl Street station in New York City was the first installation for the supply of current for incandescent lighting in a city district. The constant pressure dynamos were gradually improved and enlarged. The details of all parts of the system were made more perfect, and in the hands of Edison and others the incandescent lamps, originally of high cost, were much cheapened and the quality of the production was greatly improved. Lamps originally cost one dollar each. The best lamps that are made can be had at present for about one-fifth that price. Millions of incandescent lamps are annually manufactured. Great lighting stations furnish the current for the working of these lamps, some stations containing machinery aggregating many thousands of horse-power capacity. Not only do these stations furnish electric energy for the working of arc lamps and incandescent lamps, but, in addition, for innumerable motors ranging in size from the small desk fan of one-tenth horse-power up to those of hundreds of horse-power. The larger sizes replace steam or hydraulic power for elevators, and many are used in shops and factories for driving machinery such as printing-presses, machinery tools, and the like. In spite of the fact that it was well known that a good dynamo when reversed could be made a source of power, Twenty years ago an electric motor was a curiosity; fifty years ago crude examples run by batteries were only to be occasionally found in cabinets of scientific apparatus. Machinery Hall, at the Centennial Exhibition of 1876, typified the mill of the past, never again to be reproduced, with its huge engine and lines of heavy shafting and belts conveying power to the different tools or machines in operation. The modern mill or factory has its engines and dynamos located wherever convenient, its electric lines and numerous motors connected thereto, and each of them either driving comparatively short lines of shafting or attached to drive single pieces of machinery. The wilderness of belts and pulleys which used to characterize a factory is gradually being cleared away, and electric distribution of power substituted. Moreover, the lighting of the modern mill or factory is done from the same electric plant which distributes power. The electric motor has already partly revolutionized the distribution of power for stationary machinery, but as applied to railways in place of animal power the revolution is complete. The period which has elapsed since About 1850, Hall, a well-known instrument maker of Boston, catalogued a small toy electric locomotive dragging a car upon rails which were insulated and connected with a stationary battery of two Grove cells. This arrangement was sold as a piece of scientific apparatus, and appears to be the first example of an electrically driven vehicle connected by rolling contacts to an immovable energy source. Other early experimenters, The modern overhead trolley, or under-running trolley, as it is called, seems to have been first invented by Van Depoele, and used by him in practical electric railway work about 1886 and thereafter. The universality of this invention for overhead supply marks the device as a really important advance in the art of electric traction. Van Depoele was also a pioneer in the use of an underground conduit, which he employed successfully in Toronto in 1884. The names of Edward M. Bentley and Walter H. Knight stand out prominently in connection with the first use of an underground conduit, tried under their plans in August, 1884, at Cleveland, on the tracks of the horse-railway company. We have barely outlined the history of the electric-motor railway up to the beginning of a period of wonderful development, resulting in the almost complete replacement by electric traction of horse traction or tramway lines, all within an interval of scarcely more than ten years. The year 1888 may be said to mark the beginning of this work, and in that year the Sprague Company, with Frank J. Sprague at its head, put into operation the electric line at Richmond, Virginia, using the under- The West End Company, with two hundred miles of track in and around Boston, began to equip its lines in 1888 with the Thomson-Houston plant. The success of this great undertaking left no doubt of the future of electric traction. The difficulties which had seriously threatened future success were gradually removed. The electric railway progress was so great in the United States that about January 1, 1891, there were more than two hundred and forty lines in operation. About thirty thousand horses and mules were replaced by electric power in the single year of 1891. In 1892 the Thomson-Houston interests and those of the Edison All these things, together with the great extension of the lines into suburban and country districts, and the interconnection of the lines of one district with those of another, cannot fail to have a decidedly beneficial effect upon the life, habits, and health of the people. While the United States and Canada have been and still are the theatre of the enormous advance in electric traction, as in other electric work, many electric car lines have in recent years been established in Great Britain and on the continent of Europe. Countries like Japan, Australia, South Africa, and South America have also in operation many electric trolley lines, and the work is rapidly extending. Most of this work, even in Europe, has been carried out either by importation of equipment from America, or by apparatus manufactured there, but following American practice closely. The bulk of the work has been done with the overhead wire and under-running trolley, but there are notable instances of the use of electric conductors in underground slotted conduits, chief of which are the great systems of street railway in New York City. The motor-car, or car propelled by its own motors, has also been introduced upon standard steam roads to a limited extent as a supplement to steam traction. The earliest of these installations are the one at Nantasket, Massachusetts, and that between Hartford and New Britain, in Connecticut. A number of special high-speed lines, using similar plans, have gone into operation in recent years. The problem of constructing electric motors of sufficient robustness for heavy work and controlling them effectively was not an easy one, and the difficulties were increased greatly because of the placing of the motors under the car body, exposed to wet, to dust and dirt of road. The advantage of the motor-car, or motor-car train, is that the traction or hold upon the track increases with the increase of the weight or load carried. It is thus able to be accelerated rapidly after a stop, and also climb steep grades without slipping its wheels. Nevertheless, there are circumstances which favor the employment of a locomotive at the head of a train, as in steam practice. This is the case in lines where a train of coal or ore cars is drawn by electric mining locomotives. Many such plants are in operation, and, at the same time the electric power is used to drive fans for ventilating, pumps for drainage, electric hoists, etc., besides being used for lighting the mines. The trains in the tunnels of the Metropolitan Underground Railway of London have for many years been operated by steam locomotives with the inevitable escape of steam, foul, suffocating gases, and more or less soot. The three largest and most powerful electric locomotives ever put into service are those which are employed to take trains through the Baltimore and Ohio Railroad tunnel at Baltimore. They have been in service about seven or eight years, and are fully equal in power to the large steam locomotives used on steam roads. Frequently trains of cars, including the steam locomotive itself, are drawn through the tunnel by these huge electric engines, the fires on the steam machines being for the time checked so as to prevent fouling the air of the tunnel. There was opened, in London, in 1900, a new railway called the Central Underground, equipped with twenty-six electric locomotives for drawing its trains. The electric and power equipment, which embodied in itself the latest results of American practice, was also manufactured in America to suit the needs of the road. Other similar railways are in contemplation in London and in other cities of Europe. As on the elevated roads in New York City, the replacement of underground steam traction, where it exists, by electric traction is evidently only a question of a few years. An electric railway may exemplify a power-transmission The alternating current transformer not only greatly extended the radius of supply from a single station, but also enabled the station to be conveniently located where water and coal could be had without difficulty. It also permitted the distant water-powers to become sources of electric energy for lighting, power, or for other service. For example, a water-power located at a distance of fifty to one hundred miles or more from a city, or from a large manufacturing centre where cost of fuel is high, may be utilized as follows: A power-station will be located upon the site of the water-power, and the dynamos therein will generate electricity at, say, two thousand volts pressure. By means of step-up transformers this will be exchanged for a current of thirty thousand volts for transmission over a line of copper or aluminum wire to the distant consumption area. Here there will be a set of step-down transformers which will exchange the thirty-thousand-volt line current for one of so low a pressure as to be safe for local distribution to lamps, to motors, etc., either stationary or upon a railway. The same transmission plant may simultaneously supply energy for lighting, for power, for heat, and for charging storage batteries. It may, therefore, be employed both day and night. These long-distance power transmission plants are generally spoken of as “two-phase,” “three-phase,” or “polyphase” systems. Before 1890 no such plants existed. A large number of such installations are now working over distances of a few miles up to one hundred miles. They differ from what are known as single-phase alternating systems in employing, instead of a The falls of Niagara early attracted the attention of engineers to the possibility of utilizing at least a fraction of the power. It was seen that several hundred thousand horse-power might be drawn from it without materially affecting the fall, itself equivalent to several millions of horse-power. A gigantic power-station has lately been established at Niagara, taking water from a distance above the falls and delivering it below the falls through a long tunnel which forms the tail race. Ten water-wheels, located in an immense wheel-pit about two hundred feet deep, each wheel of a capacity of five thousand horse-power, drive large vertical shafts, at the upper end of which are located the large two-phase dynamos, each of five thousand horse-power. The electric energy from these machines is in part raised in pressure by huge transformers for transmission to distant points, such as the city of Buffalo, and a large portion is delivered to the numerous manufacturing plants located at moderate distances from the power-station. Besides the supply of energy for lighting, and for motors, including railways, other recent uses of electricity to which we have not yet alluded At Niagara also are works for the production of the metal aluminum from its ores. Similar works exist at other places here and abroad where power is cheap. This metal, which competes in price with brass, bulk for bulk, was only obtainable before its electric reduction at $25 to $30 per pound. The metal sodium is also extracted from soda. A large plant at Niagara also uses the electric current for the manufacture of chlorine for bleach, and caustic soda, both from common salt. Chlorate of potassium is also made at Niagara by electrolysis. A large amount of power from Niagara is also consumed for the production in special electric arc furnaces of carbide of calcium from coke and lime. This is the source of acetylene gas, the new illuminant, which is generated when water is brought into contact with the carbide. The high temperature of the electric furnace thus renders possible chemical actions which under ordinary furnace heat would not take place. Henri Moissan, a French scientist, well known for his brilliant researches in electric furnace work, has even shown that real diamonds can be made under special conditions in the electric furnace. He has, in fact, probably practised in a small way what has occurred on a grand scale in nature, resulting in diamond fields such as those at Kimberley. One problem less is thus left to be solved. The electro-chemical and kindred arts are practised not alone at Niagara, but at many other places where power is cheap. Extensive plants have grown up, mostly within the five years before the close of the century. All of the great developments in this field have come about within the last decade. The use of electricity for heating is not confined to electric furnaces, in which the exceedingly high temperature obtainable is the factor giving rise to success. While Another application of the heating power of electric currents is found in the Thomson electric welding process, the development of which has practically taken place in the past ten years. In this process an exceedingly large current, at very low electric pressure, traverses a joint between two pieces of metal to be united. It heats the joint to fusion or softening; the pieces are pushed together and welded. Here the heat is generated in the solid metal, for at no time during the operation are the pieces separated. The current is usually obtained from a welding transformer, an example of an extreme type of step-down transformer. Current at several hundred volts passed into the primary winding is exchanged for an enormous current at only two or three volts in the welding circuit in which the work is done. The present uses of this electric welding process are numerous and varied. Pieces of most of the metals and alloys, before regarded as unweldable, are capable of being joined not only to pieces of the same metal, but also to different metals. Electric welding is applied on the large scale, making joints in wires or rods, for welding wagon and carriage wheel tires, for making barrel-hoops and bands for pails, for axles of vehicles, and for carriage framing. It has given rise to special manufactures, such as electrically welded steel pipe or tube, wire fencing, etc. It is used for welding Another branch of electric development concerns the storage of electricity. The storage battery is based upon principles discovered by Gaston PlantÉ, and applied, since 1881, by Brush, by Faure, and others. Some of the larger lighting stations employ as reservoirs of electric energy large batteries charged by surplus dynamo current. This is afterwards drawn upon when the consumer’s load is heavy, as during the evening. The storage battery is, however, a heavy, cumbrous apparatus, of limited life, easily destroyed unless guarded with skill. If a form not possessing these faults be ever found, the field of possible application is almost limitless. The above by no means complete account of the progress in electric applications during the century just closed should properly be supplemented by an account of the accompanying great advances regarded from the purely scientific aspect. It is, however, only possible to make a brief reference thereto within the limits of this article. The scientific study of electricity and the application of mathematical methods in its treatment has kept busy a host of workers and drawn upon the resources of the ablest minds the age has produced. Gauss, Weber, AmpÈre, Faraday, Maxwell, Helmholtz, are no longer with us. Of the early founders of the science we have yet such men as Lord Kelvin, formerly Sir William Thomson, Mascart, and others, still zealous in scientific work. Following them are a large number, notable for valuable contributions to the progress of electrical science, in discoveries, in research, and in mathematical The wonderful X-ray, and the rich scientific harvest which has followed the discovery by RÖntgen of invisible radiation from a vacuum tube, was preceded by much investigation of the effects of electric discharges in vacuum tubes, and Hittorf, followed by Crookes, had given special study to these effects in very high or nearly perfect vacua. Crookes, though especially enriching science by his work, missed the peculiar X-ray, which, nevertheless, must have been emitted from many of his vacuum tubes, not only in his hands, but in those of subsequent students. It was as late as 1896 that RÖntgen announced his discovery. Since that time several other sources of invisible radiation have been discovered, more or less similar in effect to the radiations from a vacuum tube, but emitted, singular as the fact is, from rare substances extracted from certain minerals. Leaving out of consideration the great value of the X-ray to physicians and surgeons, its effect in stimulating scientific inquiry has almost been incalculable. The renewed study of effects of electric discharge in vacuum tubes has already, in the work of such investigators as Lenard, J.J. Thomson, and others, apparently carried the subdivision of matter far beyond the time-honored chemical atom, and has gone far towards The nineteenth century closed with many important problems in electrical science unsolved. What great or far-reaching discoveries are yet in store, who can tell? What valuable practical developments are to come, who can predict? The electrical progress has been great—very great—but after all only a part of that grander advance in so many other fields. The hands of man are strengthened by the control of mighty forces. His electric lines traverse the mountain passes as well as the plains. His electric railway scales the Jungfrau. But he still spends his best effort, and has always done so, in the construction and equipment of his engines of destruction, and now exhausts the mines of the world of valuable metals, for ships of war, whose ultimate goal is the bottom of the sea. In this also electricity is made to play an increasingly important part. It trains the guns, loads them, fires them. It works the signals and the search-lights. It ventilates the ship, blows the fires, and lights the dark spaces. Perhaps all this is necessary now, and, if so, well. But if a fraction of the vast expenditure entailed were turned to the encouragement of advance in the arts and employments of peace in the twentieth century, can it be doubted that, at the close, the nineteenth century might come to be regarded, in spite of its achievements, as a rather wasteful, semi-barbarous transition period? Elihu Thomson. |