In looking back over a century’s work in the oldest of the sciences, one is struck not only by the enormous advance that has been made in those branches of the science dealing with the motions of the heavenly bodies which were cultivated at least eight thousand years ago by early dwellers in the valleys of the Nile, Tigris, and Euphrates, but with the fact that during the century that has just passed away a perfectly new science of astronomy arose. By annexing physics and chemistry astronomers now study the motions of the particles of which all celestial bodies are composed; a new molecular astronomy has now been firmly established side by side with the old molar astronomy which formerly alone occupied the thoughts of star-gazers. Along this new line our knowledge has advanced by leaps and bounds, and the results already obtained in expanding and perfecting man’s views of nature in all her beauty and immensity are second to none which have been garnered during the last hundred years. THE POSITION AT THE BEGINNING OF THE CENTURYIt may be well before attempting to obtain a glimpse of recent progress that we should try to grasp the state of the science at the time when the nineteenth century was about to dawn, and this, perhaps, can be best accomplished by seeing what men were working at this period, at which the greatest activity was to be found First and foremost among the workers—he has, in fact, been described as “the greatest of modern astronomers”—was William Herschel, a German domiciled in England. In the year 1773 he hired a telescope, and with this small instrument he obtained his first glimpses of the rich fields of exploration open in the skies. From that time onward he had one fixed purpose in his mind, which was to obtain as intimate knowledge as possible of the construction of the heavens. To do this, of course, great optical power was necessary, and such was his energy that, as large instruments were not to be obtained at any price, he set to work and made them himself. Herschel presented the beginning of the nineteenth century not only with a definite idea of the constitution of the stellar system, based on a connected body of facts and deductions from facts, as gleaned through his telescopes, but observations without number in many fields. He discovered a new planet, Uranus, and several satellites of the planets; published catalogues of nebulÆ; established the gravitational bond between many “double stars,” and carried on observations of the sun, then supposed to be a habitable globe. What Herschel did for observational astronomy and deductions therefrom, Laplace did for the furtherance of our knowledge concerning the exact motions of the bodies comprising the solar system. Newton had long before announced that gravitation was universal, and Laplace brought together investigations undertaken to determine the validity of this law. These were given to the world in his wonderful book on Celestial Mechanics, the first volumes of which appeared in 1799. A survey of the work of these two great astronomers gives one an idea of what was going on in observational The study was now destined to make rapid strides, as not only were new optical instruments—some designed for special purposes—introduced, new mathematical processes applied, fresh fields for research opened up, but the number of workers was considerably augmented by the increased means available; so much so, indeed, that the first astronomical periodical was founded by Von Zach in 1800 to facilitate intercommunications between the observers. The first evening of the nineteenth century (January 1, 1801) augured well for progress. It had long been thought that all the members of the solar system had not as yet been discovered, and there was a very notable gap between the planets Mars and Jupiter, indicated by Bode’s law. Observers were organized to make a thorough search for the missing planet, portions of the sky being divided between them for minute examination. It fell to the Italian observer, Piazzi, to discover a small body which was moving in an orbit between these two planets on the date named. The century thus began with a sensation, and because the new body, which was named “Ceres,” was not of sufficient size to be accepted as the “missing planet,” the idea was suggested that perhaps it was a fragment of a larger planet that had been blown to pieces in the past. An opportunity here arose for mathematical astronomy to come to the help of the observer, for Ceres soon was lost in the solar rays, and in order to rediscover it, after it had passed conjunction, an approximate knowledge of its path and future position was necessary. With the then existing methods of computation of orbits it was imperative to have numerous measured positions to use as data for the calculation. The scanty This, with a more general method of orbit computation, also elaborated by himself, was sufficient to enable him to calculate future positions of Ceres, and on the anniversary of the original discovery, Olbers, another great pioneer in orbit calculations, found the planet in very nearly the position assigned by Gauss. So great was the curiosity regarding the other portions of the planet, which was supposed to have been shattered, that numerous observers at once commenced to search after other fragments. These were the actualities of 1801 and thereabouts; but the seed of much future work was sown. Kant and Laplace had already occupied themselves with theories as to the world formation, and spectrum analysis as applied to the heavenly bodies may be said to have been started by Wollaston’s observations of dark lines in the solar spectrum in 1802. Fraunhofer was then a boy at school. In the same year the first photographic prints were produced by Wedgewood and Davy. OBSERVATORIESIt has been stated that at the beginning of the century there were no permanent observatories either in the southern hemisphere or in the United States. The end of the century finds us with two hundred observatories all told, of which fourteen are south of the equator and The observatory of Parramatta was the first established (1821) in the southern hemisphere. This was followed by that at the Cape of Good Hope in 1829. Of the more modern southern observatories from which the best work has come we may mention Cordova, the seat of Gould’s important investigations, established in 1868, and Arequipa, a dependency of Harvard, whence the spectra of the southern stars have been secured, erected still more recently (1881). I believe, but I do not know, that the large number of American observatories have radiated from Cincinnati, where, in consequence of eloquent appeals, both by voice and pen, from Mitchell, then professor of astronomy, an observatory was commenced in 1845. There can be no doubt that at the present moment, with the numerous well-equipped and active observatories, and the careful and thorough teaching established side by side with them, which enables numberless students to use the various instruments, the United States, in matters astronomical, fills the position occupied by Germany at the beginning of the century. In Europe special observatories have been established at Meudon, Kensington, and Potsdam, so that new astrophysical inquiries may be undertaken without interfering with the prosecution or extension of the important meridional work carried on at Paris, Greenwich, and Berlin. A large proportion of the observations made by the Lick and Yerkes observatories in the United States has been astrophysical. One of the special inquiries committed to the charge of the Solar Physics Observatory at Kensington at its establishment by the British government had relation to the possibility of running home meteorological changes on the earth, especially those followed by drought and This kind of work was at first considered ideally useless; we shall see later on what has become of it. IMPROVEMENTS IN TELESCOPESThe progress in astronomical science throughout the nineteenth century has naturally to a great extent depended upon the advances made both in the optics of the telescope and the way in which they are mounted, either with circles to record exact times and positions, or made to move so as to keep a star or other celestial objects in the field of view while under observation. The perfection of definition and the magnitude of the lenses employed in the modern instrument have been responsible for many important discoveries. Ever since the telescope was invented—Galileo’s lens was smaller than those used in spectacles—men’s minds have been concentrated on producing instruments of larger and larger size to fathom the cosmos to its innermost depths. At the beginning of the century we were, as we have seen already, in possession of reflectors of large dimensions; Herschel’s four-foot mirror, the instrument he was using in 1801, which had a focal length of forty feet, was capable of being employed with high magnifying powers; and it was the judicious use of these, on occasions when the finest of weather prevailed, that enabled him to enrich so extensively our knowledge of the stellar and planetary systems. For the ordinary work of astronomy, Towards the end of the eighteenth century a Swiss artisan, Pierre Guinard, after many years of patient labor, succeeded in producing pure disks of flint glass as large as six inches in diameter. The modern refracting telescope thus became possible. In 1804 there was started at Munich the famous optical and mechanical institute, which soon made its presence felt in the astronomical world. Reforms in instrument making were soon taken in hand, and under the leadership of the great German astronomer, Bessel, great strides were made in instruments of precision. Fraunhofer, who had been silently working away at the theory of lenses, and making various experiments in the manufacture of glass, was joined, in 1805, by Guinard. In 1809 Troughton invented a new method of graduating circles, according to Airy the greatest improvement ever achieved in the art of instrument making. In 1824 Fraunhofer successfully completed and perfected an object-glass of 9.9 inches in diameter for the Dorpat Observatory. This objective might literally have been called a “giant,” for nothing approaching it in size had been previously made. England, which was at one time the exclusive seat of the manufacture of refracting telescopes, was now completely outstripped by both Germany and France, and for this we had to thank “the short-sighted policy of the government, which had placed an exorbitant duty on the manufacture of flint glass.” In 1833 the Dorpat refractor was eclipsed by one of fifteen inches aperture made for the Pulkowa Observatory by Merz & MÄhler, Fraunhofer’s successors, who about ten years Speculum metal was not destined to stay; ten years later (1857) the genius of LÉon Foucault introduced glass mirrors with a thin coating of silver deposited chemically, and these have now universally superseded the metallic ones. The long supremacy of Germany in the matter of refractors was broken down ultimately by the famous English optician and engineer, Thomas Cooke, of York. His first considerable instrument, one of seven inches aperture, was finished in 1851; and in 1865, a year before his lamented death, he completed the first of our present giant refractors, one of twenty-five inches aperture, for Mr. Newall, of Gateshead. In consequence of the success of Cooke’s achievement other large refractors were soon undertaken. Alvan Clarke, the famous optician of Cambridgeport, Massachusetts, at once commenced a twenty-six-inch for the Washington Observatory. The next was one of twenty-seven inches, made by Grubb for the Vienna Observatory. Object-glasses now grew inch by inch in So much, then, for the largest refractors. In recent years, since the introduction of the silver on glass mirrors, with their stability of figure and brilliant surface, which can be easily renewed, reflectors of large apertures are again being produced. The first of these was one of thirty-six inches aperture made by Calver for Dr. Common, who demonstrated its fine qualities and his own skill by the beautiful photographs of the nebula of Orion he was enabled to secure with it. Dr. Common himself has since turned his attention to the making and silvering of large mirrors of this kind, and the largest he has actually completed and mounted equatorially is one with a diameter of five feet. Another of thirty-six inches aperture is in use at the Solar Physics Observatory at Kensington. The progress of depositing silver on glass has led of late years to important developments in which plane mirrors are used. Foucault was the first to utilize such mirrors in his “siderostat,” in which such a mirror is made to move in front of a horizontal fixed telescope, which may be of any focal length, and no expensive dome or rising floor is required. The plane mirror of the siderostat in the Paris Exhibition telescope is six feet in diameter. Now that in astronomical work eye observations are indispensably supplemented by the employment of photography, an important modification of the refracting telescope has become necessary; this was first suggested by Rutherfurd. The ordinary achromatic object-glass consists, as a rule, of two lenses, one made of flint and the other of crown glass; but in this form the photographic rays are not brought to the same focus as the visual rays. This, however, can be achieved by employing three lenses instead of two, each of different kinds of glass. The most modern improvement in the telescope is due to Mr. Dennis Taylor, of Cooke & Sons, and to Dr. Schott and Professor Abbe, whose researches in the manufacture of old and new varieties of optical glass have rendered Mr. Taylor’s results feasible. By the Taylor lens outstanding color is abolished, all the rays being brought absolutely to the same focus; such lenses can therefore be used either for visual observations or for photography for spectroscopy. SPECTROSCOPIC ASTRONOMYThe branch of physics which at the present day has assumed such mighty and far-reaching proportions in astronomical work is that dealing with spectrum analysis, which, although suggested as early as the time of Kepler, did not receive any impetus as regards its application to celestial bodies until the beginning of the present century at the hands of Wollaston and Fraunhofer. Then, The first celestial body towards which the spectroscope was turned was our central luminary, the sun. Wollaston first discovered that its spectrum was crossed by a few dark lines; we learned next from Fraunhofer, who in 1814 worked with instruments of greater power, that the solar spectrum was crossed not only by a few dark lines, but by some hundreds. Not content with examining the light of the sun, Fraunhofer turned his instrument towards the stars, the light of which he also examined, so that he may be justly called the inventor of stellar spectrum analysis. It is not to the credit of modern science that from this time forward spectrum analysis did not become a recognized branch of scientific inquiry, but, as a matter of fact, Fraunhofer’s observations were buried in oblivion for nearly half a century. The importance of them was not recognized till the origin of the dark lines, both in sun and stars, had been explained by Stokes and others, as before stated. The lines in the solar spectrum were mapped with great diligence by Kirchhoff in 1861 and 1862, and later by AngstrÖm and Thalen, and this was done side by side with chemical work in the laboratory. The chemistry of the sun was thus to a great extent revealed; it was no longer a habitable globe, but one with its visible boundary at a fierce heat, surrounded by an atmosphere of metallic vapors, chief among them iron, also in a state of incandescence. Here, then, was established a firm link between the heavens and the earth; the first step to the problem of the chemistry of space had been taken. It was only natural that as advances were made the instrumental equipment should keep pace with them. Spectroscopes were built on a larger scale; more prisms, which meant greater dispersion, were employed to render the measurements of the lines in spectra more accurate. The growth of our knowledge especially necessitated the making of maps of the lines in the solar spectrum, and in the spectra of the chemical elements which had been compared with it on a natural scale. This was done by AngstrÖm, who utilized for this purpose the diffraction grating invented by Fraunhofer, and defined the position of all lines in spectra by their “wave lengths,” in ten-millionths of a millimetre or “tenth-metres.” In 1862 Rutherfurd extended Fraunhofer’s work on the stars by a first attempt at classification. Two years later Huggins and Miller produced maps of the spectra of some stars. Donati demonstrated that comets gave radiation spectra, and Huggins did the same for nebulÆ. By these observations comets and nebulÆ were shown to be spectroscopically different from stars, which at that time were studied by their dark lines only. Chiefly by the labors of Pickering, the energetic head of the Harvard Observatory, science has been enriched during the later years by observations of thousands of stellar spectra, the study of which has brought about the most marvellous advance in our knowledge. These priceless data have enabled us now to classify the stars not only by their brightness, or their color, but by their chemistry. Next to be chronicled is the application of the so-called Doppler-Fizeau principle, which teaches us that when To return from the stars to the sun. By the device of throwing an image of the sun on the slit of the spectroscope the spectra of solar spots have been studied from 1866 onward, and a little later the brighter portions of the sun’s outer envelopes, revealed till then only during eclipses, were brought within our ken spectroscopically, so that they are now studied every day. CELESTIAL PHOTOGRAPHYWedgewood and Davy, in 1802, made prints on paper by means of silver salts, but it was not until 1830 that Niepce and Daguerre founded photography, which Arago, in an address to the French Chamber, at once suggested might subsequently be used to record the positions of stars. In 1839 we find Sir John Herschel carrying out a series of experiments so important for our correct knowledge of the sequence of steps in the early stages of photography that I have no hesitation in quoting from one The original of the above-mentioned photograph, the first photograph ever taken on glass, is now in the science collection at the Victoria and Albert Museum, South Kensington. In the early days of photography colored glasses were first used to investigate the action of different colors on the photographic plate. Sir John Herschel was among the first to propose that such investigations should be made direct with a spectrum, and he, like Dr. J.W. Draper, stated that he had found a new kind of light beyond the blue end of the spectrum, as the photographic plate showed a portion of the spectrum there which was not visible to the eye. Advance followed advance, and in 1842 Becquerel photographed the whole solar spectrum, in colors, with nearly all the lines registered by the hand and eye of Fraunhofer, not only the blue end, but the complete spectrum, from Draper’s “latent light,” as he called the ultra-violet rays, to the extreme red end. The first photograph of a celestial object was one of the moon, secured by Dr. J.W. Draper in 1840; we had to wait till 1845, so far as I know, before a daguerreotype was taken of the sun; this was done by Foucault and Fizeau, while the first photograph of a star—Vega—was taken at Harvard in 1850. After the introduction of the wet-collodion process regular photography of Photography now began to pay the debt she owed to spectrum analysis. The first laboratory photograph of the spectra of the chemical elements was taken by Dr. W.A. Miller in 1862. Rutherfurd was the first to secure a photograph of the solar spectrum with considerable dispersion by means of prisms. In 1863 Mascart undertook a complete photographic investigation of the ultra-violet portion of the solar spectrum, a work of no mean magnitude. He, however, did not employ a train of prisms for producing the spectrum, but a diffraction grating, using the light reflected from the first surface. The first photograph of the spectrum of a star was secured by Henry Draper, the son of Dr. J.W. Draper, one of the pioneers in photography in 1872. It was not till the introduction of dry plates in 1876 that the photography of the fainter celestial objects or of their spectra was possible, as a long exposure was naturally required. Stellar spectra were photographed by Huggins in 1879, and in the next year Draper photographed the nebula of Orion. As the dry plates became more rapid, and as longer exposures were employed, revelation followed revelation; the nebulÆ as seen by the naked eye, and even some stars, were found by the Henrys, Roberts, Max Wolf, Barnard, and others, to be but the brighter kernels of large nebulous patches. This new application of photography, depending upon long exposures (the longest one I know of has extended to forty hours), had an important reflex action A system of electric control of the going of the driving-clock of the telescope by means of a sidereal clock was introduced, the simplest one being designed by Russell, of Sydney; a most elaborate one by Grubb, of Dublin. Another application of the method of long exposures has been the discovery of minor planets by the trails impressed by their motion among the stars on the photographic plates on which the images of both are impressed. A complete spectroscopic survey of the stars by means of photography was commenced in 1886 at Harvard College, as a memorial to Draper, who died while he was laboring diligently and successfully in securing advances in astrophysical inquiries. To carry on this work at Harvard, Professor Pickering wisely reverted to the method first employed by Fraunhofer, and utilized by Respighi and another in 1871, of placing prisms in front of the object-glass. In the photographing of stellar spectra by means of objective prisms, the driving-clock of the telescope must not go exactly at sidereal rate, but at certain speeds depending on the brightness and position of the star under examination. This is necessary because the image of the spectrum of a star on the photograph is only a thin line in which it is impossible to see the spectral lines; the spectrum must be broadened, and this is accomplished by making the star image “trail” to a certain degree on the plate. This trailing is accomplished by means of the clock, the rate of which is made to vary. In this way the trail One of the most interesting applications of photography to spectrum analysis during the latter part of the century has been the utilization by Messrs. Deslandres and Hale of a suggestion made by Janssen, that by employing photography images of the sun and its surroundings can be obtained in light on one wave length. In this way we can study the distribution of any one of the chemical constituents of the sun separately, and note its behavior, not only on the sun itself, but in the atmosphere which enfolds the disk. It is strange that, in spite of the suggestions of Faye, and others after him, one of the great advantages of the employment of photography in astronomical work, namely, the abolition of “personal equation,” has so far been almost entirely neglected. What “personal equation” is can be perhaps illustrated by considering an observer who is observing the transit of a star over the wires in a transit instrument. His object is to note the exact time, to a fraction of a second, when a star passes each wire; and this is done by listening to the beats of a clock near at hand and estimating the fractions. Some observers constantly note the time either a little in advance or a little later than the actual time, and this small distance between the observer and the true times is more or less constant for each observer. This difference has to be taken into account for every observation. Even the use of the chronograph At the end of the century we could almost say that except in relation to the work of the meridional observatories, photographic methods of recording observations had become exclusively used. One of the cases in which its utility is most in evidence is in the matter of eclipse observations. Spectra of the sun’s surroundings containing a thousand lines are taken in a second of time, thus replacing five or six doubtful eye observations by wealth of results which have enabled the recent vast progress to be secured. CATALOGUESCatalogues of the stars were among the first scientific records started by man, and so long as only the naked eye was used the work was not difficult, as only approximate positions were attempted, even by Hipparchus; but long before the eighteenth century dawned the problem was entirely changed by the invention of the telescope and by the provision of accurately divided circles; not only could better positions be recorded, but the number of stars to be catalogued was enormously increased, and, furthermore, other objects, nebulÆ, presented themselves in considerable numbers. In 1801 the star catalogues chiefly relied on were those of Lacaille, containing about three thousand stars scattered over the whole heavens. Maskelyne, who was then Astronomer Royal, had Another monumental catalogue dealing with the stars in the southern heavens has been that of the southern stars observed by Gould (1866). While the century was closing, another catalogue, far more stupendous than anything which could be conceived possible a few years ago, was steadily being compiled. This we owe to the far-sightedness and energy of Admiral Mouchez, a late director of the Paris Observatory. The work was commenced in 1892. The whole heavens, north and south alike, have been divided into zones, and the chief observatories on the earth’s surface are busy night after night in taking photographs of that part intrusted to them. The whole heavens are thus being made to write their autobiography, and the total gain to the astronomy of the future of this most priceless record can perhaps be scarcely grasped as yet, although the advantage of being able at any point of future time to see on a photographic plate what the heavens are telling now is sufficiently obvious. Catalogues of the stars have, of course, led to other minor catalogues of various classes of stars, binary, variable, and the like. In the later years catalogues of stars according to their spectra have enriched science. INVESTIGATIONS OF SOME IMPORTANT ASTRONOMICAL CONSTANTSThe nineteenth century was fruitful in the determination of many numerical values which are all important in enabling us to determine the distance and masses of the heavenly bodies, thereby giving us a firm grasp not only of the dimensions of our own system, but of those scattered in the celestial spaces. To take the distances first. We must begin with the exact measure of the earth; for this we must measure the exact length of an arc of meridian or of parallel—that is, a stretch of the earth’s surface lying north and south or east and west, between places of which the latitudes are accurately known in the former case, and the longitude in the latter. In either case we can determine the number of miles which go to a degree. Beginning at the opening of the nineteenth century with an arc of meridian of two degrees measured by Gauss, from GÖttingen to Altona, the arcs of meridian grew longer as the century grew older, till, at the close, the measurement of an arc of meridian from the Cape to Cairo, embracing something like sixty-eight degrees of latitude, was mooted. Thanks to this work, we now have the size of our planet to a few miles. The polar diameter is 41,709,790 feet, but the equator is not a circle: the equatorial diameter from longitude 8 degrees 15 minutes west to longitude 188 degrees 15 minutes west is 41,853,258 feet; that at right angles to it is 41,850,210 feet—that is, some thousand yards shorter. The earth, then, is shaped like an orange slightly squeezed. Knowing the earth’s diameter, we can obtain the sun’s distance by several methods, the old one by observing transits of Venus, one of which Cook went out to observe in 1768, and two of which recurred in 1874 and 1882; new ones by observations of Mars or one of the minor planets at a favorable opposition, and by determining the velocity of light. The recent discovery of a minor planet, Eros, which in one part of its orbit is nearer the earth than Mars, has recently revived interest in this method, and a combined attack is in contemplation. It has been long known that light has a finite velocity, but we had to wait till the 60’s before Fizeau and Foucault showed us how to determine its exact value. The methods introduced by them have been recently applied by Cornu, Newcomb, and Michelson, and the resulting value is slightly less than three hundred thousand metres per second. Combining this with the constant of aberration, the distance of the sun can be determined. It is wonderful how these vastly different methods agree in the resulting mean distance. At the beginning of the century it stood roughly at ninety-five million miles; this has been reduced to ninety-three million nine hundred and sixty-five thousand miles. The extreme Knowing the distance of the sun, the way is open to us to determine, by a method suggested by Galileo, the distances of those stars which occupy a different position among their fellows, as seen from opposite points in the earth’s orbit round the sun, points one hundred and eighty-six million miles apart. We now know the distances of many such stars, Bessel having determined the first in 1838. The nearest star to us, so far as we know, is Centauri, the light of which takes four and a half years to reach us. Not many years ago Pritchard applied photography to this branch of inquiry; we may, therefore, expect a still more rapid progress in the future. With regard to masses. We naturally must first know that of the earth; having its size, if we can determine its density, the rest follows. The problem of determining the mean density of the earth occupied the minds of many workers during the nineteenth century. Newton (about 1728) pointed out how it could be deduced by observing the deviation from the vertical of a plumb-line suspended near a large mass of matter—a mountain, the volume and density of which could be previously determined. This method, which is very laborious and requires the greatest skill and most delicate instruments, has been employed several times, by Bouguer and Condamine, in 1738, at Chimborazo; Maskelyne, in 1774, at Schehallien in Scotland; and James, at Arthur’s Seat, near Edinburgh. At the beginning of the century another method was introduced by Cavendish. This consists in measuring the attraction of two large spheres of known size and mass, such as two balls of lead on two very small and The most recent determination by this method, and one which is considered to give us perhaps the most accurate value, is that which is due to the skill and ingenuity of Professor Boys. His improvement consisted in constructing a most delicate torsion balance; the attracted spheres consisted of small gold balls suspended by a quartz fibre carrying a mirror to indicate the amount of twist. The whole instrument was quite small, and could easily be protected from air currents and changes of temperature, while the use of the quartz fibres reduced to a minimum one of the greatest difficulties of the Cavendish experiment. The value of the mean density of the earth is now considered to be 5.6, which means that if we have a globe of water exactly the same size as our own earth, the real earth would weigh just 5.6 times this globe of water. The earth’s weight, in tons, does not convey much idea, but that it is six thousand trillions may interest the curious. This determination has enabled the masses of the sun, moon, planets and satellites, and many sidereal systems to be accurately known in relation to the mass of the earth. SOME ACHIEVEMENTS OF MATHEMATICAL ANALYSISUranus, a planet unknown to the ancients, was discovered by its movement among the stars by William Herschel in 1781. It was not until 1846 that another major planet was added to the solar system, and this discovery was one of the sensations of the century. The story of the independent discovery of Neptune by Adams and Le Verrier, who were both driven to the conclusion that certain apparent regularities in the motion of Uranus were due to the attraction of another body travelling on an orbit outside it, has been often told. But the results of the inquiries which now concern us are generally of not so sensational a character, although they lie at the root of our knowledge of celestial motions. They more often take the shape of tables and discussions relating to the movements of the bodies which make up our solar system. Gauss may be said to have led the way during the nineteenth century by his Theoria molus corporum coelestium solem ambientium. This was a worthy sequel to the MÉchanique CÉleste, in which work, towards the end of the eighteenth century, Laplace had enshrined all that was known on the planetary results of gravitation. In later years Le Verrier and Newcomb have been among the chief workers on whom the mantle of such distinguished predecessors has fallen. From them the planet and satellite tables now in use have been derived. But the motion of our own satellite, the moon, has had fascinations for other analysts besides those we have named. The problem, indeed, of the moon’s motion is one of the most difficult, and has taxed the ingenuity of astronomers from an early date. Even at the present day it is impossible to predict the exact position of the moon at any one moment owing to inequalities and perturbations, the exact varying values of which are not known. The two most important theories of the motion of the moon completed towards the middle of the century were due to Hansen and Delaunay. The former’s appeared in 1838, the lunar tables being published later (1857), while the latter’s was published in 1860. Hansen’s theory had for its chief object the formation Delaunay’s theory surmounted this difficulty, but at the expense of still greater inconvenience for making an ephemeris. The slow convergence of certain series involved an immense amount of labor to give sufficiently approximate results. More recently, as the century was closing, Dr. Brown took up the subject and made a fresh attempt to calculate the motion of our satellite. It may be stated that he adopts all Delaunay’s modifications of the problem and works them out algebraically; but there are many technical differences which it would be out of place to mention here. Enough has been stated to show that there is not likely to be any breach of continuity in the treatment of this most important problem. Another attack on the moon, and, incidentally, its motion, has recently been made by another analyst, Professor George Darwin; grappling with all the consequences of tidal friction, he has been able to present to us the past and future history of our satellite. Beginning as a part of the material congeries from which subsequently some fifty million years ago both earth and moon, as separate bodies, were formed, it has ever since been extending its orbit, and so retreating farther away from its centre of motion, while the period of the earth’s rotation has been increasing at the same time, from a possible period of some three hours when the moon was born, to one of one thousand four hundred hours when STELLAR EVOLUTIONIt was only in the 80’s, after thousands of observations of the spectra of stars, nebulÆ, and comets had been secured, that the full meaning of the revelations of the spectroscope began to dawn upon the world. Before the introduction of spectrum analysis all stars were supposed to be suns, and the only difference recognized among them was one of brilliancy and the variation of brilliancy in the case of some of them. It ultimately came out that great classes might be recognized by the differences of their spectra, which were ultimately traced to differences in their chemistry and in their temperature, as determined by the extension of the spectra in the ultra-violet, the whiter stars being hotter than the red ones, as a white-hot poker is hotter than a red-hot poker. Next there was evidence to show that a large proportion of the stars were not stars at all like the sun, but swarms of meteorites; and in this way the mysterious new stars which appear from time to time in the heavens, and a large number of variable stars, were explained as arising from collisions among such swarms. The inquiry which dealt with the spectroscopic results, having thus introduced the ideas of meteor swarms and collisions to explain many stellar phenomena, went further and showed that the various chemical changes observed in passing from star to star might also be explained by supposing the whole stellar constitution to arise from cool meteoritic swarms represented by nebulÆ, the changes up to a certain point being explained by a rise of temperature due to condensation towards a centre. Here the new view was opposed to that of Laplace, advanced After all the meteorites in the parent swarm had been condensed into the central gaseous mass, that mass had to cool. So that we had in the heavens not only stars more or less meteoritic in structure, of rising temperature, but stars chiefly gaseous, of falling temperature. It was obvious that representatives of both these classes of stars might have nearly the same mean effective temperature, and therefore more or less the same spectrum. A minute inquiry entirely justified these conclusions. So far had the detailed chemistry of the stars been carried in the latter years of the century that the question of stellar evolution gave rise to that of inorganic evolution generally, the sequence in the phenomena of which can only be studied in the stars, for laboratory work without stint has shown that in them we have celestial furnaces, the heat of which transcends that of our most powerful electric sparks. In this way astronomy is paying the debt she owes to chemistry. THE SUN AND HIS SYSTEMAlthough the outer confines of space have, as we have seen, been compelled to bring their tribute of new knowledge by means of the penetrating power possessed by modern telescopes, and the cameras and spectroscopes attached to them, the study of the near has by no means been neglected, and for the reason that in astronomy especially we must content ourselves in the case of the more distant bodies by surmising what Thus what we can learn about the sun helps to explain what we discern much more dimly in the case of stars; a study of the moon’s face we are compelled to take as showing us the possibilities relating to the surface condition of other satellites so far removed from us that they only appear as points of light. To begin, then, with the sun. Where a volume might be written, a few words must suffice. I have already stated that at the beginning of the nineteenth century the prevailing opinion was that it was a habitable globe. It was limited to the fiery ball we see. At the end of the century it is a body of the fiercest heat, and the ball we see is only a central portion of a huge and terribly interesting mechanism, the outer portions of which heave and throb every eleven years. Spots, prominences, corona, everything feels this throbbing. Although the discovery of spots on the sun was among Galileo’s first achievements, it was reserved for the last half of the nineteenth century to demonstrate their almost perfect periodicity. Thanks to the labors of Schwabe, Wolf, Carrington, and De la Rue, Stewart, and Loewy, we now know that every eleven years the spots wax and wane; Tacchini and Ricco, during the last thirty years, have proved that the prominences follow suit, and the fact that the corona also obeys the same law was established during the American eclipse of 1878. The study of solar physics consists in watching and recording the thermal, chemical, and other changes which accompany this period. Some of these effects can be best studied during those times when the ball itself is covered by the moon in an eclipse. Then the outer portions of the sun are revealed in all their beauty and majesty, and all the world goes to see. From the sun we may pass to his system, and first consider the nearest body to us—the moon. While some astronomers have been discussing the movements and evolution of our satellite, others have been engaged upon maps of its surface, upon questions dealing with a lunar atmosphere, or a study of the origin of the present conformations and of possible changes. The science of selenology may be said to have been founded by SchrÖter at the beginning of the century, but it required the application of photography in later years to put it on a firm basis. Maps of the moon have been prepared by Lohrmann, Beer and MÄdler, and Schmidt, the latter showing the positions of more than thirty thousand craters. Very erroneous notions are held by some as to what we may hope to do in the examination of the moon’s surface by a powerful telescope. A power of a thousand enables us to see it as if we were looking at York from London. It is recorded that Lassell once said that with his largest reflector in a “fit” of the finest definition he thought he might be able to detect whether a carpet as large as Lincoln’s Inn Fields was round or square. Under these circumstances, then, we may well understand that the question of changes on the surface has been raised from time to time never to be absolutely settled one way or the other. By many the existence of an atmosphere is denied, and this is a condition which would negative changes, anything like the geological changes brought about on the surface of the earth, but the idea is now held by many that there is still an atmosphere, though of great tenuity. The last few years of the century were rendered It may readily be understood that with each increase of optical power new satellites of the various planets have been discovered. Soon after the discovery of Neptune a satellite was noted by Lassell. In 1846 both he and the eagle-eyed observer Dawes independently discovered another satellite (Hyperion) of Saturn. Lassell was rewarded in the next year by the discovery of two more satellites of Uranus; but, strangest observation of all, in 1877 Hall discovered at Washington two satellites of Mars some six or seven miles only in diameter, one of them revolving round the planet in seven and one-half hours at a distance of less than four thousand miles. As the day on Mars is not far different in duration from Wonderful as this discovery was, it is certainly not less wonderful when we consider it in connection with a passage in Gulliver’s Travels, so true is it that truth is stranger than fiction. Swift, in his satirical reference to the inhabitants of Laputa, writes: “They have likewise discovered two lesser stars, or satellites, which revolve round Mars, whereof the innermost is distant from the centre of the primary planet exactly three of his diameters and the outermost five; the former revolves in the space of ten hours; and the latter in twenty-one and a half.” The last discovery of this kind has been that of an inner satellite of Jupiter by Barnard in 1892. The planets from Mercury to Saturn were known to the ancients. I have already referred to the discovery of Uranus by Herschel’s giant telescope, not long before the nineteenth century was born, and of Neptune, by analysis, towards the end of the first half of the century. With regard to what modern observations have done in regard to their physical appearance, the first place in general interest must be given to Saturn and Mars. Saturn has always been regarded as the most interesting of the planetary family on account of its unique rings. Many subdivisions of the rings, and a dusky ring, first seen by Dawes and Bond, have been discovered during the last sixty years. The meteoritic nature of the rings was suggested by Clerk Maxwell in 1857, and Keeler’s demonstration of the truth of this view by means of the spectroscope, a few years ago, was brilliant in conception and execution. But during the last half of the century the interest centred in Mars has been gradually increasing. The drawings made during the opposition of 1862, when compared with those made by Beer and MÄdler (1830–40), Afterwards came the revelation of the hawk-eyed Schiaparelli, beginning in the year 1877, and his wonderful map of the planet’s surface. The land surfaces, instead of being unbroken, were cut up, as an English farm is cut up by hedges; straight lines of different breadths and tints crossed the land surfaces in all directions, and at times some of them appeared double. Schiaparelli naturally concluded that they were rivers—water channels—and being an Italian he used the appropriate word canali. This, unfortunately, as it turned out, was translated canals. Now canals are dug, ergo there were diggers. From this the demonstration, not of the habitability, but of the actual habitation, of Mars was a small step, and the best way of signalling to newly found kinsmen across some thirty millions of miles of space was discussed. The world of science owes a debt of gratitude to Mr. Percival Lowell for having taken out to the pure air and low latitude of Arizona an eighteen-inch telescope for the sole purpose of accumulating facts tending to throw light upon this newly raised question. This he did in 1894. Schiaparelli has continued his magnificent observations through each opposition when the planet is most favorably situated for observation, and since 1896 Signor Cerulli, armed with a fifteen-inch Cooke, in the fine climate of Italy, has joined in the inquiry, so that facts are now being rapidly accumulated. It has been stated that markings similar to the strange so-called “canals” on Mars are to be seen on Mercury, Finally, in our survey of our own system, come comets and meteor swarms. One of the most fruitful discoveries of the century, that comets are meteor swarms, we owe to the genius of Schiaparelli, A.H. Newton, and other workers on those tiny celestial messengers which give rise to the phenomena of “falling” or “shooting” stars. The magnificent displays of 1799, 1833, 1866, and, alas! that which failed to come in 1899, we now know must be associated with Tempel’s Comet. This is by no means the only case so far established; the connection will in the future be closer still when the orbits of the various swarms observed throughout the year shall be better known. Comets which attract public attention by their brightness and grandeur of form are rather rare, and, in fact, only twenty-five of such have been seen since 1800. We have, however, with the great advance in instrumental equipment, been able to discover many which are scarcely visible to the naked eye, and this has swollen the number of comets very considerably. In the seventeenth century we find that only thirty-two were observed, while in the eighteenth this number was more than doubled (seventy-two). In the nineteenth century more than three hundred were placed on record, which is practically more than four times the number seen in the eighteenth. The last great comet visible any considerable time was that discovered by Donati in 1858, and so carefully observed by Bond. It is unfortunate that since the importance, in so many directions, of spectroscopic observations THE CONNECTION BETWEEN SOLAR AND TERRESTRIAL WEATHEREverybody agrees that all the energy utilized on this planet of ours, with the single exception of that supplied by the tides, comes from the sun. We are all familiar with the changes due to the earth’s daily rotation bringing us now on the side of our planet illuminated by the sun, then plunging us into darkness; that changes of season must necessarily follow from the earth’s yearly journey round the sun is universally recognized. On the other hand, it is a modern idea that those solar phenomena which prove to us considerable changes of temperature in the sun itself, may, and indeed should, be echoed by changes on our planet, giving us thereby an eleven-year period to be considered, as well as a year and a day. This response of the earth to solar changes was first observed in the continuous records of those instruments which register for us the earth’s magnetism at any one place. The magnetic effects were strongest when there were more spots, taking them as indicators of solar changes. Lamont first (without knowing it) made this out, at the beginning of the latter half of the century (1851), from the GÖttingen observations of the daily range of the declination needle. Sabine the next year not only announced the same cycle in the violence of the “magnetic storms” observed at Toronto, but at once attributed them to solar influence, the two cycles running concurrently. It is now universally recognized that terrestrial magnetic effects, including aurorÆ, minutely echo the solar changes. The eleven-year period is not one to be neglected. By 1872, however, we had both rainfall and sun-spot observations, and the cycle of the latter had been made out. Meldrum, the most distinguished meteorologist living at the time, and others, pronounced that the rainfall was greatest at sun-spot maximum, and, further, that the greatest number of cyclones occurred in the East and West Indies at such times. This result with regard to rainfall was not generally accepted, but Chambers showed shortly afterwards an undoubted connection between the cycles of solar spots and barometric pressure in the Indian area. By means of a study of the widened lines observed in sun spots an attempt has been recently made to study the temperature, history of the sun since about 1877, and the years of mean temperature and when the heat was in excess (+) and defect (-) made out, have been as follows: Having these solar data, the next thing to do was to study the Indian rainfall during the southwest monsoon for the years 1877–1886, the object being to endeavor to ascertain if the + and - temperature pulses in the sun were echoed by + and - pulses of rainfall. The Indian rainfall was taken first because in the tropics the phenomena The rainfalls at Mauritius, Cape Town, and Batavia were next collated to see if the pulses felt in India were traceable in other regions surrounding the Indian Ocean to the south and east. This was found to be the case. A wider inquiry was followed, we are told, with equal success, so that we are justified in hoping that the question of the dependence of terrestrial upon solar weather has made a step in advance. But just as the general public and practical men took little heed of the connection between sun spots and magnetism until experience taught them that telegraphic messages often could not “get through” when there were many sun spots, so the same public will not consider the connection in regard to meteorology unless the forecasting of droughts and famines be possible. The recent work suggests that, if the recent advances in solar physics be considered, the inquiries regarding rainfall may be placed on a firmer basis than they could possibly have had in 1872, and that such forecastings may become possible. What was looked for in 1872 was a change in the quantity of rain at maximum sun spots only, the idea being that there might be an effective change of solar temperature, either in excess or defect, at such times and that there would be a gradual and continuous variation from maximum to maximum. We see that the rainfalls referred to above justify the conclusions derived from the recent work that two effects ought to be expected in a sun-spot cycle instead of one. If the authors of this communication to which I refer are right, then droughts and famines occur in India because the rain pulses, which are associated with the solar-heat pulses, are of short duration. When they cease the quantity of rain which falls in the Indian area is not sufficient, without water storage, for the purposes of agriculture; they are followed, therefore, by droughts, and at times subsequently by famines. They divide the period 1877—89 as under:
Their statement is based on the fact that all the famines which have devastated India for the last seventy years have occurred at intervals of eleven years, or thereabouts, working backward and forward from the central years 1880 and 1885–86 in the above table, the middle years, that is, between the pulses. It is now pointed out that the highest Niles follow the years of the + and - pulses, as does the highest rainfall in the Indian area. Even if these results, which were communicated to the Royal Society of London five weeks before the end of the century, be confirmed, it may be pointed out that Sir William Herschel’s suggestion of 1801 will have required a whole century for its fulfilment, so slowly do those branches of science move which have not already led to some practical development. Norman Lockyer. |