Metcalf, (loc. cit.), gives a method for the preparation of the sulphonic acids of para toluidine, and states that both the possible acids are formed, with the meta position (referred to the methyl group) in good yield. Schultz and Julius, (“Farbestoff Tabellen”, 1894 Edition, Trans, by F. C. Green), and Nevile and Winther, (loc. cit.), say that the sulphonation of para toluidine gives a mixture of the sulphonic acids, with the ortho (referred to the methyl group) sulphonic acid in a much greater yield. As the sulphonation of para nitro toluene gives (Dissertation, R. S. Norris, BPL. 5976.109) a ninety-five per cent yield of the ortho sulphonic acid, it would seem as though the amino compound should give a large yield of the acid (sulphonic acid group ortho to the methyl group,) and such was found to be the case. I followed Metcalf’s directions as follows: in an apparatus fitted with an automatic stirrer and a thermometer I placed 200 grams (110cc.) of twenty per cent fuming sulphuric acid. I then slowly added with rapid stirring 100grams of powdered para toluidine which was obtained from the Newport Chemical Works. The addition took thirteen minutes. The initial temperature of the solution was 18°C. The maximum was obtained when about half the toluidine had been added and was 148°C. The final temperature was 130°C. After addition was complete I stirred for five minutes, and then slowly heated the mixture to 180°C. and kept it there for an hour. Sulphonation I dissolved the crude acid obtained as above in ten liters of water (Metcalf’s directions) and precipitated the excess of sulphuric acid with barium hydroxide, and then filtered the solution. It was a clear brownish color. I then evaporated to 100cc. A smell of para toluidine was always present in the vapor indicating a probable hydrolysis of the acid. (Nevile and Winther (loc. cit.) say that this sulphonic acid can be hydrolyzed by heating with water), A test after sulphonation and before evaporation showed a sample to be completely soluble in water, and no cloudiness was produced when a sample was dissolved in sodium hydroxide, as is the case if a solution of para toluidine sulphate is dissolved in the same reagent. When the volume had reached 100cc. a light brown crust had formed on top of the liquid and on cooling and filtering two products were obtained; a light brown powdery substance in larger amount (47.5 grams.), and a small amount of hard square brown crystals. On evaporating the filtrate nearly to dryness more material separated which did not look like either of the above substances; it weighed twenty grams. This has not been investigated as yet. As the brownish powdery substance was mixed with the flat crystals produced above, a method had to be found to separate them and purify each. I screened them as much as possible with good results. I removed the last of the fine powder by dissolving it off with hot water. Metcalf said that they could be separated by their difference in specific gravity in fifty per cent alcohol but this method was unsuccessful. I boiled up the aqueous solution of the powdery substance with animal charcoal, filtered and evaporated to crystallization. Square, flat, white crystals were obtained identical in all but color with those mentioned above. They are soluble with difficulty in cold water, readily in hot, and insoluble in alcohol. In these properties and in appearance they compare to the ortho sulphonic acid of para toluidine as made and described by Parks, (Dissertation, 1892). Metcalf and Nevile and Winther say that the meta sulphonic acid of para toluidine forms needles, but I obtained nothing that could in any way be called needles. This sulphonic acid had no melting point, but charred and decomposed. A test for elements showed nitrogen and sulphur to be present. The aqueous solution had a strong acid reaction to litmus. In order to see if this might be the desired acid I tried to prepare an acid chloride with phosphorus pentachloride in the usual way, and then intended to convert it into the amide and get a melting point for identification. I used equal weights of the acid and phosphorus pentachloride. I ground them together at ordinary temperature in a mortar: no result. I heated it on The material mentioned above as being the final product from the sulphonation of para toluidine, obtained in a yield of twenty grams or ten per cent yield and then uninvestigated, has since been identified as the acid I was looking for, or para toluidine meta sulphonic acid. A small amount was cooled and diazotized in the usual manner; the diazo compound seemed to be insoluble in the amount of water used, for a white crystalline needle-like precipitate appeared. This was decomposed by boiling with dilute nitric acid (Nevile and Winther, loc. cit.), and on cooling small tufts of yellow needles separated. These were filtered off and dried, then recrystallized from alcohol. The best portions of these were then recrystallized from ether and the melting point determined. |