CHAPTER VII

Previous

Warm-Air Furnaces

56. Principle Upon Which a Furnace Works. The success of warm-air heating depends on a natural circulation of air thruout all the rooms which are to be heated. The air is the vehicle of transmission of the heat from the fire to the rooms to be warmed.

A warm-air furnace is simply a large stove encased in a sheet-metal jacket (Figs. 26 and 27). The jacket is usually insulated with asbestos, since the stove is set in the basement where radiation of heat is not desired. The air entering the casing is warmed by the stove. As the air is warmed, it expands and becomes lighter, so rises to the top of the furnace; from here it is conducted to the rooms above. The warm air which has passed upward must be replaced by cooler air entering at the bottom of the jacket. In the rooms above, there must be outlets for the cold air, already in them, so that it may be replaced by the incoming warm air. Cold-air shafts from the floor leading downward serve as outlets. Sometimes they return the cooled air to the base of the furnace jacket.

Fig. 26. Warm-air furnace.

57. The Stove Part. The stove part of the hot-air furnace consists of a fire pot supported above a place where the ashes may fall and a chimney to carry off smoke. The draft below the grate in the fire pot lets in air which is essential to the proper burning of the fuel. In this respect, it is similar to a cook stove. A draft above the fire when opened a little lets in air which aids in the complete combustion of the gases given off by the fuel. Burning these gases adds to the amount of heat secured from the fuel. Opening the draft wider checks the burning of the fire. There should be a damper in the smoke pipe. When this is closed, it checks the draft up the chimney. This is needed because some chimneys often draw up air too fast to make the fire burn well. When checking the fire, close the draft below, open the one above the fire box, and close the one in the pipe. To make the fire burn fast, open the draft below, close the one above the fire box, and open the one in the pipe. Remember that a fire will not burn well if there is too much draft. Adjust the drafts until the fire burns with a clear, bright flame without giving off smoke. After a fire is built, the manner of adding fuel makes a difference in the efficiency of the furnace. When using coal, add it in rather small amounts, spreading it in a layer over the entire fire. Do not make this layer so thick that the fire smokes. The fuel will not burn with a clear flame if the fire is being smothered. Much fuel is wasted by ignorant and careless management of furnaces.

Fig. 27. Circulation of warm air.

58. The Cold-Air Shaft. It is through a cold-air shaft that the cooler air comes into the furnace. Some furnaces have this built so that it draws the cooling air from the rooms above down into the furnace to be heated again. This is an economical arrangement. Some others draw fresh air from out of doors into the furnace, letting the cold air from the rooms above drain into the cellar and out of doors. This is more expensive, as the air to be heated is usually colder, but it has the advantage of helping ventilate the rooms by bringing a constant supply of fresh air.

The cold-air shaft leading from out of doors should have the outer end covered with wire mesh, and a cloth which should be washed or renewed often.

Never sweep dirt down a register or cold-air shaft. It comes back into the room in time. Dust the registers occasionally.

In older heating systems, there was but one large cold-air shaft to drain the cold air from the rooms above. In more modern houses, a cold-air shaft is placed in every room that may be shut off from the others. This does away with the old difficulty of heating a closed room, for it is as important that the colder air gets out as that the warm air gets in.

59. Hot-Air Pipes. The hot-air pipes lead from the top of the jacket about the furnace to the floor above. In most houses, one pipe goes to each room. This is unnecessary if the rooms are not closed off, but if they are, they need the pipe entering the room. To economize with heat and regulate the amount of air passing up these pipes, there must be a shutter in them, near the furnace, as well as in the register. This shutter is placed near the furnace so that no heat passes into the pipe when not wanted in the room to which it leads. This saves waste in radiation from the pipe in the cellar. When a room is not in use, close this damper.

Fig. 28. Pipeless furnace.

Since warmed air will continue to travel upward so long as it stays warmer than the air above, it is important that the pipes have a continuous rise thruout their entire length, the in some parts the rise may have to be only very slight. The shorter the pipes, the better, for there will be less loss of heat from radiation on the way to the rooms.

Fig. 29. One-room, hot-air heater.

60. Location of the Furnace. A central location for the furnace is best because the pipes may be shorter, and this makes possible a greater elevation per foot of each pipe, so that the air can flow thru it faster. A central location also permits a uniform distribution of pipes about the furnace, which, in turn, produces a more even flow of air to all the rooms.

The air from the hot register rises to the top of the room, or, if the way is open, to the top of the house. Here it spreads over the upper area. As it cools or is displaced by still hotter air, it falls. When it reaches the floor, it flows down the cold-air shaft in the floor. If the cold-air shaft is not in the floor, there may be a layer of colder air there so the room will not be comfortable.

61. Air. There is a constant change of air in all houses, due to opening of doors and the fact that walls are not air-tight. This may not be enough for comfort. If a room is not heating well, it has been found that opening the window to change the air in the room, even when the outside air is very cold, helps in the circulation of air in the room, and so with the warming of it. It is difficult to warm a room filled with stagnant air.

62. Pipeless Furnaces. The pipeless furnace works on the same principle as the one with pipes (Fig. 28). One large opening above the furnace lets the heat in to some central room, and from here it circulates into all other rooms not closed off from the central room. The cold-air shaft may be around the opening for heated air.

Stoves encased in a metal jacket that operate like hot-air furnaces (Fig. 29) are used in heating one-room schoolhouses and other small public buildings.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page