The Necessity for Drainage.—The importance of drainage for all roads subject to the effects of storm or underground water has always been recognized by road builders, but during recent years constantly increasing attention has been given to this phase of road construction. It is unfortunate that there has in the past been some tendency to consider elaborate drainage provisions less necessary where rigid types of surfaces were employed. It has become apparent, from the nature of the defects observed in all sorts of road surfaces, that to neglect or minimize the importance of drainage in connection with either earth roads or any class of surfaced roads is to invite rapid deterioration of some sections of the roadway surface and to add to maintenance costs. The degree to which lack of drainage provisions affect the serviceability of the road surface varies with the amount of precipitation in the locality and the manner in which it is distributed throughout the year. In the humid areas of the United States, which are, roughly, those portions east of a north and south line passing through Omaha and Kansas City, together with the northern part of the Pacific slope, precipitation is generally in excess of 30 inches per year and fairly well distributed throughout the year, but with seasonal variations in rate. In these areas, the effect of the precipitation, both as regards its tendency to lower the stability of soils and as an eroding agent, must be carefully provided against in highway design. Outside of the areas mentioned above, the precipitation is much less than 30 inches per year and its effect as an agent of erosion is of greatest significance, although in restricted areas there may be short periods when the soil is made unstable by ground water. Importance of Design.—The drainage system for a proposed road improvement ought to be designed with as much care as any other element, and, to do so, a study must be made of all factors that have any bearing on the drainage requirements and the probable effectiveness of the proposed drainage system. The well established principles of land drainage should be followed so far as applicable. The basic principle of road drainage is to minimize the effect of water to such an extent that there will always be a layer of comparatively dry soil of appreciable thickness under the traveled part of the road. This layer should probably never be less than two feet thick and for soils of a structure favorable to capillary action it should be at least three feet thick. The means employed to accomplish the requisite drainage will be as various as the conditions encountered. Surface Drainage.—The drainage method which is by far the most nearly general in application is that which utilizes open ditches, and the system which employs these ditches is usually referred to as surface drainage. The full possibilities of this method of minimizing the effects of storm water are rarely fully utilized in road construction. Very frequently, deterioration of a road surface is directly attributable to failure to provide adequately for the removal of the storm water or water from the melting of snow that has fallen on the road, or water that flows to the road from land adjacent thereto. Surface water can usually most cheaply and expeditiously be carried away in open ditches, although special conditions are occasionally encountered which require supplementary tile drains. Run-off.—The capacity required of side ditches to insure satisfactory surface drainage will be affected by the amount and nature of the precipitation in the region where the road is built. The annual rainfall in a region may amount to several feet, but may be well distributed throughout the year with an absence of excessive rainfall for short periods, that is, flood conditions may rarely occur. In other areas, the annual rainfall may be comparatively small but the precipitation occurs at a very high rate, that is, flood conditions may be common, or it may be at a low rate extending over a considerable period. These peculiarities must be known before an adequate drainage system can be planned. It is almost universally true in the United States that precipitation at a very high rate will be for a relatively short duration, and during these short periods, which usually do not exceed thirty minutes, a portion of the water that falls on the areas adjacent to the road and that drains to the road ditches will soak into the soil and therefore not reach the ditches along the road. The extent to which the water is taken up by the soil will vary with the porosity and slope of the land and the character of the growth thereon. Cultivated land will absorb nearly all of the water from showers up to fifteen or twenty minutes duration; grass land a somewhat smaller percentage; and hard baked or other impervious soil will absorb a comparatively small amount. Rocky ground and steep slopes will absorb very little storm water. The surface of the road is designed to turn water rapidly to the ditches, but when the material is the natural soil, there is always considerable absorption of storm water. Surfaces such as sandclay, gravel and macadam do not Generally it is best to assume that if a rain lasts for forty-five minutes or more, all of the water will run off, as the soil will reach a state of saturation in that time. This is not true of deep sand, but is for nearly all other soils. The ditch capacity needed will therefore depend upon the area drained, the character of the soil, the slopes and the rainfall characteristics of the region, and upon the nature of the road surface. For a required capacity, the cross section area of the ditch will vary inversely as the grade, because the velocity of flow increases with an increase in the grade of the ditch. If the surface water must be carried along the road for distances exceeding five or six hundred feet, the ditch must be constructed of increasing capacity toward the outlet in order to accommodate the accumulated volume of water. The velocity of flow varies not only with the grade, but with the shape of the cross section, cleanness of the channel, the depth of the water in the channel, alignment of the channel and the kind of material in which the channel is formed. It is not necessary to go to great refinement in the design of the side ditches for the ordinary case where the water is carried along the road for only a few hundred feet. The ditches are made of ample capacity by using the commonly accepted cross section for a road, which will be discussed in a later paragraph. But where large areas must be drained by the road ditches, it is desirable carefully to design the side ditches. The basis for that design is too lengthy to be included herein, and reference should be made to a standard treatise on the subject. Ordinary Design of Ditches.—For grades of one per cent or less on roads in the humid area, the bottom of the ditch should be at least three and one-half feet lower than If the topography is such that it is evident considerable storm water will flow from the adjacent land to the road ditches, the design must be modified to take this into account. Sometimes such water can be diverted by ditches well back from the road, and thus prevented from flowing into the side ditches along the roadway. It is especially desirable to divert water, which would otherwise flow down the slope of a cut, by means of a ditch on the hill-side above the upper edge of the slope of the cut. Ditches are not effective unless they afford a free flow throughout their length and have an outlet to a drainage channel of ample capacity. Therefore, ditch grades should be established by survey, especially if the gradient is less than one per cent, and the construction work should be checked to insure that the ditch is actually constructed as planned. A few high places in the ditch will greatly reduce the effectiveness, although these may appear at the time of construction to be slight. Constricted places, such as might be due to a small amount of loose earth left in the ditch, are always to be avoided. Where the side ditch passes from a cut to the berm alongside a fill, the ditch should be excavated throughout in the undisturbed natural soil, five feet or more from the toe of the slope of the fill, and along the filled portion of the Underground Water.—In a preceding paragraph, mention was made of the fact that only a part of the storm water runs off over the surface of the ground, the larger part being absorbed by the soil. The water thus absorbed flows downward through the pores in the soil until it is deflected laterally by some physical characteristic of the soil structure. The movement of underground water is affected by many circumstances, but only two conditions need be discussed herein. Underground water, like surface water, tends to attain a level surface, but in so doing it may need to flow long distances through the pores of the soil, and to overcome the resistance incident to so doing some head will be required. That is to say, the water will be higher at some places than at others. If a cut is made in grading the road, the road surface may actually be lower than the ground water level in the land adjoining the road. As a result, the water will seep out of the side slopes in the cut and keep the ditches wet, or even furnish enough water to occasion a flow in the ditch. Similarly, the higher head of the underground water near the top of a hill may result in ground water coming quite close to the surface some distance down the hill. The remedy in both cases is tile underdrains alongside the road to lower the ground water level so that it cannot affect the road surface. Sometimes the ground water encounters an impervious stratum as it flows downward through the soil, or one that is less pervious than the surface soil. When such is the case, the water will follow along this stratum, and should there be an outcrop of the dense stratum, a spring will be found at that place. This may be on a highway. The impervious stratum may not actually outcrop but may lie only a few feet under the surface of the road, in which Tile Drains.—Where the soil and climatic conditions are such that the roadway at times becomes unstable because of underground water rising to a level not far below the road surface, the ground water level is lowered by means of tile underdrains. The function of the tile drains in such cases is precisely the same as when employed in land drainage; to lower the ground water level. Laying Tile.—The tile lines are usually laid in trenches parallel to the center line of the road near the ditch line and at least 4 feet deep so as to keep the ground water level well down. They must be carefully laid to line and grade. A good outlet must be provided and the last few joints of pipe should be bell-and-spigot sewer pipe with the joints filled with cement mortar. The opening of the tile should be covered with a coarse screen to prevent animals from nesting in the tile. It is frequently necessary to lay a line of tile at the toe of the slope in cuts to intercept water that will percolate under the road from the banks at the sides. In some cases, it is desirable to back-fill the tile trench with gravel or broken stone to insure rapid penetration of surface water to the tile. In other instances, it is advantageous to place catch basins about every three or four hundred feet. These may be of concrete or of tile placed on end or may be blind catch basins formed by filling a section of the trench with broken stone. When a blind catch basin is used, the top Culverts.—Culverts and bridges are a part of the drainage system and the distinction between the two is merely a matter of size. Generally, structures of spans less than about eight feet are classed as culverts, but the practice is not uniform. In this discussion culverts will be defined as of spans of 8 feet or less. Numerous culverts are required to afford passage for storm water and small streams crosswise of the road, and their aggregate cost is a large item in the cost of road improvement. The size of the waterway of a culvert required in any location will be estimated by an inspection of the stream and existing structure, and by determining the extent and physical characteristics of the drainage area. Sometimes there is sufficient evidence at the site to indicate quite closely the size required, but this should always be checked by run-off computations. The drainage area contributing water to the stream passing through the culvert under consideration is computed from contour maps or from a survey of the ground, and the size of culvert determined by one of the empirical formulas applicable to that purpose. In these formulas, the solution depends upon the proper selection of a factor "C" which varies in accordance with the nature of the drainage area. Two of these that are quite widely used are as follows: Myers' Formula: a = CA Where a = area of cross section of culvert in square feet. A = area in acres of the drainage area above culvert. C a factor varying from 1 for flat country to 4 for mountainous country or rocky soil, the exact value to be selected after an inspection of the drainage area. Talbot's Formula: Area of waterway in square feet =
C being variable according to circumstances thus: "For steep and rocky ground C varies from 2/3 to 1. For rolling agricultural country, subject to floods at times of melting snow, and with length of valley three or four times its width, C is about 1/3, and if stream is longer in proportion to the area, decrease C. In districts not affected by accumulated snow, and where the length of valley is several times its width, 1/5 or 1/6 or even less may be used. C should be increased for steep side slopes, especially if the upper part of the valley has a much greater fall than the channel at the culvert. The value of C to be used in any case is determined after an inspection of the drainage area." Fig. 2. Design of Pipe Culvert and Bulkhead Length of Culvert.—The clear length between end walls on a culvert should be at least equal to the width of the roadway between ditches. This is a minimum of 20 feet for secondary roads and ranges from 24 to 30 feet for main roads. The headwall to the culvert should not be a monument, but should be no higher than needed to prevent vehicles from leaving the roadway at the culvert. Farm Entrance Culverts.—At farm entrances, culverts are required to carry the farm driveway across the side Types of CulvertsCulverts constructed of concrete and poured in place are called box culverts because of the rectangular form of the cross section. Culverts of pre-cast pipe are known as pipe culverts. Several forms of pipe culvert are in general use. Fig. 3.—Typical Concrete Box Culvert Metal Pipe.—These may be of cast iron, steel or wrought iron. The cast iron pipe is very durable but expensive and heavy to handle and is not widely used in highway construction. Steel pipe has been employed to a limited extent but its durability is questioned. At least it is known that the pipe made from uncoated, light sheet steel is not very durable. Sheet iron and sheets made Clay and Cement Concrete Pipe.—The ordinary burned clay bell and spigot pipe that is employed for sewer construction is sometimes used for culverts. It must be very carefully bedded, preferably on a concrete cradle and the joints filled with cement mortar. Culverts of this type have a tendency to break under unusual loads, such as traction engines or trucks. They may be damaged by the pressure from freezing water, particularly when successive freezing and thawing results in the culvert filling with mushy snow, which subsequently freezes. Concrete Pipe.—Reinforced concrete pipe is a satisfactory material for culverts, if the pipe is properly designed. The pipe should be carefully laid on a firm earth bed with earth carefully back-filled and tamped around the pipe. The joints in the pipe should be filled with cement mortar, or should be of a design that will be tight. Endwalls for Culverts.—A substantial retaining wall is placed at each end of the culvert barrel, whatever the type. This is to prevent the end of the culvert from becoming choked with earth and to retain the roadway at the culvert. It also indicates to the drivers the location of the end of the culvert. The endwall extends a foot or more below the floor of the culvert to prevent water from cutting under the barrel. Plain concrete or stone masonry are most commonly used for culvert endwalls. Fig. 4.—Two Types of Drop Inlet Culvert Reinforced Concrete Box Culverts.—The pipe culvert is limited in application to the smaller waterways. Reinforced concrete is extensively used for culverts of all sizes, Fig. 5.—Drop Inlet Culvert Drop Inlet Culverts.—In some locations erosion has begun in the fields adjacent to a culvert and it will probably continue until the stream above the culvert has eroded to about the level of the floor of the culvert. This is a reason for placing the culvert as high as the roadway will permit, so long as the area above the culvert will be properly drained. Considerable reclamation of land is possible if the culvert is constructed with a box at the inlet and as shown in Fig. 4. The area up-stream from the culvert will not erode below the level of the top of the box at the inlet end. Where the stream crossing the road has eroded to considerable depth or has considerable fall, as would sometimes be the case on side hill roads, the culvert barrel would follow the general slope of the ditch but should have a drop inlet. This type of culvert is shown in Fig. 5. |