In March 1979 Voyager 1 swept past Jupiter, photographing both the giant planet and five of its moons. Four months later, a companion spacecraft, Voyager 2, made a similar encounter. Now, with Jupiter receding behind them, both spacecraft are headed toward the outer reaches of our solar system. In November 1980, Voyager 1 will fly past Saturn. Voyager 2, traveling at slower speeds, will reach the same way station in August 1981. Beyond there, the itinerary is less certain. In January 1986, eight years after its departure from Earth, Voyager 2 may sail within range of Uranus, taking closeup pictures of that distant planet for the first time. Long after they have exhausted their fuel supplies and their radios have fallen silent, both spacecraft will continue their traverse through space and beyond our solar system, on an endless journey. An Apollo 12 astronaut retrieves Surveyor 3 hardware for Earth laboratory analysis after 30 months exposure on lunar surface. Viking Lander 2 surveys the boulder-strewn Utopian Plain and reddish sky of Mars. Preliminary results of the Voyager encounters with Jupiter are presented in this booklet. As you examine the pictures, you will be participating in a revolutionary journey of exploration. Living in a society where many accomplishments and products are billed as “extraordinary,” “stupendous,” “once in a lifetime,” or “unique,” we sometimes lose our perspective. Conditioned to hyperbole, we fail to recognize those advances that are truly exceptional. We need a historian’s vantage point to identify the events that can literally change the course of civilization. So it is that every student of history recognizes the importance of the Renaissance, an extraordinary time when man looked outward, reaching beyond the traditions of the past to study his place in the natural world. The results were apparent in art, architecture, and literature, in new philosophic and governmental systems, and in the staggering scientific revolution exemplified by Galileo’s first examination of the heavens with a telescope, and in his stubborn support of the heretical assertion that the Earth was not the center of the solar system. Historians writing a hundred or two hundred years from now may well look on the latter part of the twentieth century as another turning point in civilization. For the first time, we explored beyond Earth—first the Moon, then the neighboring planets, and finally the outermost planets, the very fringe of our solar system. How will the historian evaluate this period of exploration? First, perhaps, he will describe the Apollo program as a visionary example of great cooperative ventures that can be accomplished by many individuals, private companies, and government institutions. He will describe the subsequent space ventures that weave a fabric of cooperation and goodwill between nations. He will point out the technological advances incorporated in unmanned spacecraft, sophisticated robots able to control their own activities and solve their own problems. He will mention the revolution in microelectronics—the art of fabricating complex electrical control circuits so small the eye cannot perceive them, a revolution accelerated by the requirement to conserve weight and generate performance in interplanetary spacecraft. He will point to the introduction Galileo orbiter and probe mission to Jupiter in 1985 will expand upon the Voyager investigations of the Jovian system. A solar electric propulsion spacecraft would eject an instrumented probe toward Halley’s comet in 1986 and continue on to rendezvous with another comet, Tempel 2. Turning his attention to the environment, the historian will almost surely suggest that the first widespread realization of the fragile natural balances on Earth came at a time when we were first able to see our Earth in its entirety. The impact of a picture of Earth from deep space, a luminously blue globe surrounded by darkness, has probably been more persuasive than lengthy treatises describing the complex ways in which our system of rocks, plants, animals, water, and air is interrelated. On a more practical level, the historian will point to the new understanding of our terrestrial environment. The composition and structure of other planetary atmospheres—on Venus, Mars, and Jupiter—provide important clues to what may happen in our own atmosphere, especially if we disrupt the chemical composition. Study of the primitive crusts of the Moon, Mars, and Mercury permits us to reconstruct the first billion years of Earth history, a time when chemical elements were being concentrated in activity ultimately leading to the formation of important ore deposits. Unmanned spacecraft missions to the Sun increase our understanding of that most fundamental of all energy sources, paving the way for the efficient conversion of solar energy into many practical applications, and releasing us from dependence on ever-decreasing reserves of fossil fuels. Spacecraft circling the Earth study the upper atmospheric processes that play major roles in controlling our weather. These same spacecraft look down on Earth, aiding us with increasingly accurate forecasts of weather and crop productivity. Looking beyond matters of technology and the environment, the historian may cite the latter part of the twentieth century as a time of explosive exploration, comparable to the 15th and 16th century exploration of the Earth’s oceans and the distant lands that bounded them. In a sense, exploration—whether it is physical or intellectual—provides its own rewards. The United States has always been a nation that moves forward, pushing back the frontiers of the West, pushing back the frontiers of social and economic development, and now pushing back the frontiers of space. It is arguable that this spirit of exploration is indispensable to a vigorous society, and that any society that ceases to explore, to inquire, and to strive is only a few years from decline. And so the historian may recall the early days of lunar exploration, the Apollo project, the landing of unmanned Viking spacecraft on Mars, and the encounters of Voyager spacecraft with Jupiter and Saturn as the first steps in a sustained program of space exploration—a program that is profoundly changing man’s perspective of himself, of the Earth, and of the larger cosmos beyond. Thomas A. Mutch, Associate Administrator for Space Science National Aeronautics and Space Administration |