In only twelve hours, Saturn’s satellites grew from names in ancient mythology into dazzling worlds with personae of their own. As Voyager 1 sailed through the Saturn system, it returned photographs of Mimas, Enceladus, Tethys, Dione, and Rhea—all part of a class of intermediate-sized icy bodies heretofore unstudied by planetary spacecraft. All but Enceladus show heavily cratered surfaces, evidence of aeons of meteorite bombardment. Enceladus hints at internal processes, as yet unidentified, which may have erased from its surface the evidence of early bombardment—but we must await Voyager 2’s arrival next August to better understand this body. 11/9/80 4.5 million km (2.8 million mi) The surface of giant Titan, now dethroned from its seat as the solar system’s largest satellite (Jupiter’s Ganymede is larger), remains an enigma, shrouded beneath thick layers of haze. 11/12/80 22,000 km (14,000 mi) Tiny moons—three new ones and three confirmed from previous sightings—may tell us much about ring dynamics since gravitational forces from satellites probably influence the ring structure. Two of these tiny moons are on the verge of collision in the same orbit, while several others appear to bound the A- and F-Rings. Iapetus, whose two hemispheres differ dramatically in brightness, was photographed in its orbit, almost 3.6 million kilometers (2.2 million miles) from the planet. 11/12/80 425,000 km (264,000 mi) Mimas, Saturn’s innermost large satellite, has an impact crater covering more than one quarter the diameter of the entire moon. Nowhere else in the solar system has such a disproportionately large feature been seen. In fact, it is believed that any impact larger than this would probably have shattered Mimas into two or more fragments. The crater has a raised rim and central peak, typical of large impact structures on terrestrial planets. Additional smaller craters, 15 to 45 kilometers (10 to 30 miles) in diameter, can be seen scattered across the surface, particularly along the terminator. Mimas is one of the small, low density Saturnian satellites implying that it is composed primarily of ice. 11/12/80 130,000 km (80,000 mi) Mimas’ other side shows a uniformly and heavily cratered surface—a record of the bombardment that occurred throughout the solar system in its early history 4.5 billion years ago. A long, narrow trough about 5 kilometers (3 miles) wide crosses from northeast to southwest. Mimas’ surface is very reflective (about 60 percent), indicating that it consists largely of ice, which has been chipped and pulverized by aeons of meteoritic bombardment. Such a surface on a small, low mass moon would probably resemble light, powdery snow. Features as small as 3 kilometers (2 miles) across are visible. 11/12/80 650,000 km (400,000 mi) Enceladus appears to be largely devoid of craters or other major surface relief, suggesting that perhaps internal processes may have erased such structures. This satellite will be seen better by Voyager 2 when it flies past Saturn in August 1981. 11/12/80 1.2 million km (750,000 mi) This heavily cratered surface of Tethys faces toward Saturn and includes a large valley about 750 kilometers (500 miles) long and 60 kilometers (40 miles) wide. The craters are the result of impacts, and the valley appears to be a large fracture of unknown origin. Tethys has a diameter of 1050 kilometers (650 miles), about one-third that of Earth’s Moon. The smallest features visible in this picture are about 24 kilometers (15 miles) across. 11/12/80 700,000 km (435,000 mi) Dione reveals two distinctly different hemispheres. The photograph shows Dione’s trailing side. Bright radiating patterns are probably rays of debris thrown out of impact craters; other bright areas may be topographic ridges and valleys. 11/12/80 162,000 km (101,000 mi) Dione’s other hemisphere (mosaic) also has many impact craters—the record of cosmic collisions. The largest crater is less than 100 kilometers (60 miles) in diameter and includes a well-developed central peak. Sinuous valleys (seen near each pole) are probably the result of crustal fracturing in the moon’s icy crust. Dione’s diameter is only 1100 kilometers (700 miles), much smaller than any of Jupiter’s icy moons. 11/13/80 80,000 km (50,000 mi) Craters stand shoulder-to-shoulder on the surface of Saturn’s satellite Rhea, seen in this mosaic of the highest-resolution pictures of the north polar region. Rhea is 1500 kilometers (950 miles) in diameter and is the most heavily cratered Saturn moon. The largest crater, made by the impact of cosmic debris, is about 300 kilometers (190 miles) in diameter. 11/12/80 128,000 km (79,500 mi) Impact craters on the ancient surface of Rhea closely resemble those on Mercury and Earth’s Moon. Many of the craters have central peaks formed by rebound of the floor during the explosive formation of the crater. Some craters are old and degraded by later impacts. Many have sharp rims and appear relatively fresh, while others are very shallow and have subdued rims, indicative of their antiquity. White areas on the edges of several of the craters are probably fresh ice exposed on steep slopes or possibly deposited by volatiles leaking from fractured regions. Surface features as small as 2.5 kilometers (1.5 miles) in diameter are visible. 11/9/80 4.5 million km (2.8 million mi) Titan is a large, bizarre satellite. It is larger (almost 5120 kilometers or 3180 miles in diameter) than the planet Mercury and possesses a dense atmosphere of unique composition. Voyager 1’s cameras show Titan’s surface to be totally obscured by a thick layer of atmospheric haze. In the full-disk photograph, only two features are visible: a faint boundary between the southern and darker northern hemispheres and a dark “hood” overlying Titan’s north polar region. 11/12/80 435,000 km (270,000 mi) This hood and greater detail in the haze layers are shown in the higher resolution photograph. 11/10/80 4.6 million km (2.8 million mi) Little detail can be seen in this distant view of Hyperion, the satellite which orbits just beyond Titan. Voyager 2 will observe Hyperion at a closer range. 11/12/80 3.2 million km (1.9 million mi) Saturn’s satellite Iapetus displays a large, circular feature about 200 kilometers (120 miles) across with a dark spot in its center. The circular feature is probably a large impact structure outlined by dark material, possibly thrown out by the impact. The satellite’s leading hemisphere is to the left, and the trailing hemisphere, which is four to five times brighter, is to the right. Iapetus’ diameter is 1450 kilometers (900 miles). 11/12/80 177,000 km (110,000 mi) Two satellites (Saturn’s tenth and eleventh) revolve in nearly identical orbits 151,000 kilometers (94,000 miles) from Saturn’s center. The satellites are each 100 to 200 kilometers in diameter, larger than the distance separating their orbits, and they are currently approaching one another at a rate which promises collision in about two years. Such a collision, however, will probably be averted by orbital changes induced by the satellites’ mutual gravitational interactions as they near one another. The trailing co-orbital satellite, seen in this photograph, has a very irregular outline (the Sun is shining from the left). This color composite was produced from three exposures taken over a period of more than six minutes. During this period, a thin shadow, cast by a previously unknown ring, moved across the satellite causing the “rainbow” pattern shown here. 10/25/80 25 million km (16 million mi) Two smaller satellites—Saturn’s thirteenth and fourteenth moons—were discovered on October 25, 1980, in images taken to study the dark “spokes” within Saturn’s B-Ring. The smaller, inner satellite has a diameter of about 500 kilometers (300 miles) and is visible just outside the A-Ring, near the bottom of the picture. It travels in an orbit between the A-Ring and the F-Ring (not visible in this photograph). The second satellite, seen to the left, travels just outside the F-Ring and is about 600 kilometers (400 miles) in diameter. Scientists believe the dimensions of the narrow F-Ring may be determined by these two satellites, which orbit on either edge of the ring. |