CHAPTER III. CURRENT OBSERVATIONS.

Previous

There is considerable diversity in the design of floats employed in current observations, dependant to some extent upon whether it is desired to ascertain the direction of the surface drift or of a deep current, it does not by any means follow that they run in simultaneous directions. There is also sometimes considerable difference in the velocity of the current at different depths—the surface current being more susceptible to influence of wind. A good form of deep float is seen in Fig. 8. It consists of a rod 2 in by 2 in, or 4 sq in The lower end of which a hollow wooden box about 6 in by 6 in is fixed, into which pebbles are placed to overcome the buoyancy of the float and cause it to take and maintain an upright position in the water with a length of 9in of the rod exposed above the surface. A small hole is formed in the top of the box for the insertion the pebbles, which is stopped up with a cork when the float is adjusted. The length of the rod will vary according to the depth of water, but it will generally be found convenient to employ a float about 10 ft and to have a spare one about 6 ft deep, but otherwise it is similar in all respects, for use in shallow water. A cheap float for gauging the surface drift can be made from an empty champagne bottle weighted with stones and partly filled with water. The top 12 in of rods and the cord and neck of the bottle, as the case may be, should be painted red, as this colour renders floats more conspicuous when in the water and gives considerable assistance in locating their position, especially when they are at some distance from the observer.

A deep-sea float designed by Mr. G. P. Bidden for ascertaining the set of the currents along the base of the ocean has recently been used by the North Sea Fisheries Investigation Committee. It consists of a bottle shaped like a soda-water bottle, made of strong glass to resist the pressure of the water, and partly filled with water, so that just sufficient air is left in it to cause it to float. A length of copper wire heavy enough to cause it to sink is then attached to the bottle, which is then dropped into the sea at a defined place. When the end of the wire touches the bottom the bottle is relieved of some of its weight and travels along with the currents a short distance above the bed of the sea. About 20 per cent. of the bottles were recovered, either by being thrown up on the beach or by being fished up in trawl nets.

[Illustration: FIG. 8.—DETAIL OF WOOD TIDAL FLOAT 10 FEET
DEEP.]

A double float, weighing about 10 lb complete, was used for the tidal observations for the Girdleness outfall sewer, Aberdeen. The surface portion consisted of two sheet-iron cups soldered together, making a float 9 in in diameter and 6 in deep. The lower or submerged portion was made of zinc, cylindrical in shape, 16 in diameter and 16 in long, perforated at intervals with lin diameter holes and suspended by means of a brass chain from a swivel formed on the underside of the surface float.

In gauging the currents the float is placed in the water at a defined point and allowed to drift, its course being noted and afterwards transferred to a plan. The time of starting should be recorded and observations of its exact position taken regularly at every quarter of an hour, so that the time taken in covering any particular distance is known and the length of travel during any quarter-hour period multiplied by four gives the speed of the current at that time in miles per hour.

The method to be employed in ascertaining the exact position of the float from time to time is a matter which requires careful consideration, and is dependent upon the degree of accuracy required according to the importance of the scheme and the situation of neighbouring towns, frequented shores, oyster beds, and other circumstances likely to be injuriously affected by any possible or probable pollution by sewage.

One method is to follow the float in a small boat carrying a marine compass which has the card balanced to remain in a horizontal position, irrespective of the tipping and rolling of the boat, and to observe simultaneously the bearing of two prominent landmarks, the position of which on the plan is known, at each of the quarter-hour periods at which the observations are to be taken. This method only gives very approximate results, and after checking the value of the observations made by its use, with contemporary observations taken by means of theodolites on the shore, the writer abandoned the system in favour of the theodolite method, which, however, requires a larger staff, and is therefore more expensive. In every case it is necessary to employ a boat to follow the float, not only so as to recover it at the end of each day's work, but principally to assist in approximately locating the float, which can then be found more readily when searching through the telescope of the theodolite. The boat should be kept about 10 ft to 20 ft from the float on the side further removed from the observers, except when surface floats are being used to ascertain the effect of the wind, when the boat should be kept to leeward of the float. Although obviously with a large boat the observations can be pursued through rougher weather, which is an important point, still the difficulty of maintaining a large boat propelled by mechanical power, or sail, sufficiently near the float to assist the observers, prevents its use, and the best result will be obtained by employing a substantial, seaworthy rowing boat with a broad beam. The boatmen appreciate the inclusion of a mast, sails, and plenty of ballast in the equipment to facilitate their return home when the day's work is done, which may happen eight or nine miles away, with twilight fast passing into darkness. There should be two boatmen, or a man and a strong youth.

In working with theodolites, it is as well before starting to select observation stations at intervals along the coast, drive pegs in the ground so that they can easily be found afterwards, and fix their position upon a 1/2500 ordnance map in the usual manner. It may, however, be found in practice that after leaving one station it is not possible to reach the next one before the time arrives for another sight to be taken. In this case the theodolite must be set up on magnetic north at an intermediate position, and sights taken to at least two landmarks, the positions of which are shown on the map, and the point of observation subsequently plotted as near as possible by the use of these readings. Inasmuch as the sights will be taken from points on the edge of the shore, which is, of course, shown on the map, it is possible, after setting up to magnetic north, to fix the position with approximate accuracy by a sight to one landmark only, but this should only be done in exceptional circumstances.

The method of taking the observations with two theodolites, as adopted by the writer, can best be explained by a reference to Fig. 9, which represents an indented piece of the coast. The end of the proposed sea outfall sewer, from which point the observations would naturally start, is marked 1, the numerals 2, 3, 4, etc., indicating the positions of the float as observed from time to time. Many intermediate observations would be taken, but in order to render the diagram more clear, these have not been shown. The lines of sight are marked 1A, 1B, etc. The points marked A1, A2, etc., indicate the first, second, etc., and subsequent positions of observer A; the points B1, B2, etc., referring to observer B. The dot-and-dash line shows the course taken by the float, which is ascertained after plotting the various observations recorded.

It is very desirable to have a horse and trap in waiting to move the observers and their instruments from place to place as required, and each observer should be provided with small flags about 2 ft square, one white and one blue, for signalling purposes.

The instruments are first set up at A1 and B1 respectively, and adjusted to read on to the predetermined point 1 where the float is to be put in Then as soon as the boatmen have reached the vicinity of this point, the observers can, by means of the flags, direct them which way to row so as to bring the boat to the exact position required, and when this is done the anchor is dropped until it is time to start, which is signalled by the observers holding the flags straight above their heads. This is also the signal used to indicate to the men that the day's work is finished, and they can pick up the float and start for home.

[Illustration: FIG. 9.—PLAN OF INDENTED COAST-LINE LLUSTRATING
METHOD OF TAKING CURRENT OBSERVATIONS WITH TWO THEODOLITES.]

Directly the float is put in the water, and at every even quarter of an hour afterwards, each observer takes a reading of its exact position, and notes the time. As soon as the readings are taken to the float in position 2, the observer A should take up his instrument and drive to A2, where he must set up ready to take reading 3 a quarter of an hour after reading 2. It will be noticed that he might possibly have been able to take the reading 3 from the position A1, but the angle made by the lines of sight from the two instruments would have been too acute for accurate work, and very probably the float would have been hidden by the headland, so that he could not take the reading at all. In order to be on the headland A4 at the proper time, A must be working towards it by getting to position A3 by the time reading 4 is due. Although the remainder of the course of the float can be followed from B1 and A4, the instruments would be reading too much in the same line, so that B must move to B2 and then after reading 5 and 6 he should move to B3. As the float returns towards the starting point, A can remain in the position A4 while B goes to B4 and then moves back along the shore as the float progresses.

The foregoing description is sufficient to indicate the general method of working, but the details will of course vary according to the configuration of the shore and the course taken by the float. Good judgment is necessary in deciding when to move from one station to the next, and celerity in setting up, adjusting the instrument, and taking readings is essential. If the boatmen can be relied upon to keep their position near the float, very long sights can be taken with sufficient accuracy by observing the position of the boat, long after the float has ceased to be visible through the telescope.

The lines of sight from each station should be subsequently plotted on the 1/2500 ordnance map; the intersection of each two corresponding sight lines giving the position of the float at that time. Then if a continuous line is drawn passing through all the points of intersection it will indicate the course taken by the float.

It is very desirable that the observers should be able to convey information to each other by signalling with the flags according to the Morse code, as follows. The dashes represent a movement of the flag from a position in front of the left shoulder to near the ground on the right side and the dots a movement from the left shoulder to the right shoulder.

TABLE 3.

MORSE ALPHABET.

E . A .- R .-. L .-.. W .— P .—. J .—- I .. U ..- F ..-. S … V …- H …. T - N -. K -.- C -.-. Y -.— D -.. X -..- B -… M — G —. Q —.- Z —.. O —-

The signal to attract attention at starting and to signify the end of the message is .. .. .. continued until it is acknowledged with a similar sign by the other observer; that for a repetition is .. — .. which is signalled when any part of the message is not understood, otherwise after each word is signalled the receiver waves - to indicate he understands it. Until proficiency is attained, two copies of the alphabet should be kept by each observer for reference, one for dispatching a message arranged in alphabetical order and the other far reading a message arranged as set out above. The white flag should be used when standing against a dark background, and the blue one when on the skyline or against a light background.

The conditions in tidal rivers vary somewhat from those occurring on the coast. As the crest of the tidal wave passes the mouth of the river a branch wave is sent up the river. This wave has first to overcome the water flowing down the river, which is acting in opposition to it, and in so doing causes a banking up of the water to such a height that the inclination of the surface is reversed to an extent sufficient to cause a tidal current to run up the river. The momentum acquired by the water passing up-stream carries it to a higher level towards the head of the river than at the mouth, and, similarly, in returning, the water flowing down the river gains sufficient impetus to scoop out the water at the mouth and form a low water below that in the sea adjoining. Owing to a flow of upland water down a river the ebb lasts longer than the flood tide by a period, increasing in length as the distance from the mouth of the river increases; and, similarly to the sea, the current may continue to run down a river after the tide has turned and the level of the water is rising. The momentum of the tide running up the centre of the river is in excess of that along the banks, so that the current changes near the shore before it does in the middle, and, as the sea water is of greater specific gravity than the fresh, weighing 64 lb per cubic foot against 62-1/2 lb, it flows up the bed of the river at the commencement of the tide, while the fresh water on the surface is running in the opposite direction. After a time the salt water becomes diffused in the fresh, so that the density of the water in a river decreases as the distance from the sea increases. The disposal of sewage discharged into a river is due primarily to the mixing action which is taking place; inasmuch as the tidal current which is the transporting agent rarely flows more rapidly than from two to four miles per hour, or, say, twelve to fifteen miles per tide. The extent to which the suspended matter is carried back again up stream when the current turns depends upon the quantity of upland water which has flowed into the upper tidal part of the river during the ebb tide, as this water occupies a certain amount of space, according to the depth and width of the river, and thus prevents the sea water flowing back to the position it occupied on the previous tide, and carrying with it the matter in suspension. The permanent seaward movement of sewage discharged into the Thames at Barking when there is only a small quantity of upland water is at the rate of about one mile per day, taking thirty days to travel the thirty-one miles to the sea, while at the mouth of the river the rate does not exceed one- third of a mile per day.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page