Part III AFLOAT

Previous

Chapter XIII

BOATS

Of all the things that a boy is interested in there is nothing more fascinating than boats, whether they are to row, paddle, or sail in, and, as many of the simple kinds are quite within the ability of a boy to make, he can take a great deal of pleasure in their construction.

For the sea-shore and salt waterways the boats should be heavily constructed, and as this is usually beyond the average boy’s ability, the sea-going dorys, surf-boats, and heavy sail-boats will be omitted, and those described and illustrated will be for use in fresh water, or on small enclosed salt waterways where the wind and tide are moderate.

In making a boat it is not only necessary to have it float, but to construct it in such a manner that the joints will keep closed and the boards will not rip off if run on a snag or against a rocky shore.

These are essential points in the proper construction of boats, and they might as well be learned by the amateur boat-builder when he is young, instead of constructing something for fun and having to learn the right way all over again when he is older and more serious work begins.

In this chapter a few of the simpler forms of boats are shown, and the warning must be given at the start that the young shipwright should use the greatest care in constructing a boat, not only for the natural pride they will take in making a good one, but for the still more important reason that the safety of all on board is dependent upon his skill and conscientious work.

Punt and Scow

A punt with a flat bottom is about the easiest and safest boat for a boy to make and own, for it is straight in construction and difficult to upset if not overloaded. As both ends are the same it can be rowed or poled forward or backward, and the overhanging ends allow plenty of seating room.

The punt shown in Fig. 4 is fifteen feet long, nineteen inches deep, and four feet wide. The ends cut under twenty inches, and at one end a skag and rudder can be arranged as shown in Fig. 2.

The sides are made of two boards, one of six and the other of a twelve-inch width, and the added thickness of the bottom boards make the total depth of the sides nineteen inches. The wider boards are the lower ones, and they are fastened together near both ends and at the middle with battens as shown in Fig. 4. The middle battens are six inches wide, and into the upper ends of them the row-lock pins are driven. The bottom planking should not be more than four or five inches wide, and it is securely nailed to the edges of the sides and to an inner keel-strip running the entire length of the bottom as shown in Fig. 3.

Fig. 1, Fig. 2, Fig. 3, Fig. 4

PUNT AND SCOW

The wood should be very dry so that it will not shrink afterwards and open the seams. Along the edges, and before the planking is laid or nailed on, smear white-lead, and lay one or two thicknesses of lamp-wicking on the lead, so that when the ends of the planking are driven down it makes a water-tight joint. Where the planks butt up against the other planking, the joints are to be generously smeared with white-lead and laid with a string of the lamp-wicking. Begin at one end and work towards the other, having first attached the end planks. Fig. 3A.

The method of attaching the skag is also shown in Fig. 3, and if the punt shows a tendency to swing around in the water and not mind the oars or rudder, a keel three inches wide may be attached on the bottom of the punt to run from the forward end of the straight bottom back to the end of the skag.

The bottom planking is to be attached at both sides and to the inner keel-strip with galvanized nails. Do not use ordinary nails as they will rust in a short time, and the only ones that are of use are the regular galvanized boat nails that can be had at most hardware stores, and always at a ship-chandler’s or from a boat-builder.

A rudder can be made and hung at one end of the boat as shown in Fig. 2.

A scow (Fig. 1) will be found the easiest of all boats to construct, but at the same time the hardest to row, since both the ends are blunt and vertical. A scow is for use in shallow water and is poled generally instead of being rowed. It is built in a similar manner to the punt, but the ends are not cut under. A good size to make the scow for general use will be fourteen feet long, eighteen inches deep, and four feet wide. It may be provided with two or three seats, and when complete both the punt and scow should receive two or three good coats of paint.

A Sharpy

It is not a difficult matter to make a sharpy like the one shown in Fig. 5, but care must be taken in its construction to insure good unions and tight joints.

Cedar, white-wood, pine, or cypress are the best woods of which to build small boats, and wide boards can be had at almost any lumber-yard. White cedar is somewhat more difficult to get than the other woods, but if possible it should be used.

To make this sharpy the proper size for a boy’s use, obtain two boards fifteen or sixteen inches wide, fourteen feet long, and seven-eighths of an inch thick, planed on both sides and as free from knots as possible. If the boards cannot be had fifteen inches wide, then batten two boards together with strips just as plain board doors are made. Before they are fastened, however, smear the joint edges with white-lead and embed a string of lamp-wicking through the middle. Use plenty of white-lead, and after the boards are pressed together and fastened the surplus lead can be scraped from both sides of the joint and saved for other joints.

From a piece of hard-wood cut a stem eighteen inches long and four inches wide, with bevelled planes, as shown in Fig. 6. A section or end view of this post will appear like Fig. 6A. Against the cut-in sides of this post the bow ends of the side boards are to be attached with screws or galvanized boat nails.

The long side boards are to be cut at bow and stern as shown at Fig. 7A and B. The bow recedes three inches and the stern is cut under thirty-four inches. Attach the bow ends of the boards to the stem-piece or post so that the top of the sides will be seven-eighths of an inch below the flat top of the post. If properly done you will then have a V-shaped affair resembling a snow-plough, which must be bent and formed in the shape of a boat.

From a board seven-eighths of an inch thick cut a spreader ten inches wide, forty-eight inches long at one side, and forty-two inches at the other, as shown in Fig. 8. Arrange this between the boards about midway from bow to stern, so that the bottom of the spreader is flush with the bottom of the sides; then draw in the rear ends of the boards and tie them temporarily with a piece of rope.

Drive a nail into the edge of each board near the end, to prevent the rope slipping off, for if it should do so the boards would fly apart and might break away from the stem-piece.

In order to draw in the ends to the proper position, insert a short stick between the ropes and twist it around until the rope is wound up; then if the end is not in far enough, slip another rope around the ends of the boards, and after releasing the first rope insert the stick and continue the twisting until the ends of the side boards are twenty-one inches apart. Before this bending process is begun, it would be well to pour a kettleful of boiling water over each side board to limber them, for dry boards are stiff and will not bend easily without checking or cracking. If it is possible to steam the boards they will yield still better to the bending process.

Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10

A SHARPY

The stern-plank is cut in the same shape as the spreader, but it is curved or crowned at the top, where it is twenty-three inches long, while at the bottom it measures twenty inches. It is six inches wide at the ends and nine inches at the middle, and is attached to the ends of the sides with boat nails while the tension-rope is still in place.

An inner keel is then cut six inches wide and pointed at the bow end, where it is attached to the lower edges of the sides at the bow and flush with them. The planking or bottom boards should fit snugly to it and to the edges of the sides.

A lap six inches long and seven-eighths of an inch deep is cut in the bottom of the spreader at the middle. In this the inner keel will fit, and after the first two or three bottom boards are nailed on at the bow end the frame of the sharpy will appear as shown in Fig. 9. The spreader and stern-plank will give the sides a flare which will have a tendency also to curve the bottom of the boat slightly from bow to stern. The bottom planks are four inches wide, of clear wood, and must not have tongue and grooved edges, but should be plain so that the white-lead and lamp-wicking will make a tight joint when the planks are driven up snug to each other.

Drive all nails carefully so as not to split the planking or sides, and as a precaution a small bit or gimlet should be used to make the start for the nail-hole.

A seat ten inches wide is fastened at the middle of the boat, over the spreader, and seats may also be arranged at the bow and stern, where they rest on cleats that are screwed fast to the sides.

A short keel or skag is fastened to the under side of the sharpy and extends from about under the middle seat aft to the stern-post. A V-shaped piece is let in where the stern is cut under as shown in Fig. 10. This keel prevents the sharpy from turning about quickly and serves to steady her when rowing, as well as making a deeper stern-post to which a rudder may be hung as shown in Fig. 2. Six inches to the rear of the middle seat plates of wood six inches wide are attached to the sides of the sharpy, as shown in the illustration (Fig. 5), and on the tops of these oar-locks or pins are inserted after the usual fashion.

At the outside of the sides and an inch below the top edge a gunwale-strip is made fast, and with a ring in the bow for a painter and a pair of oars the sharpy is ready for use.

Of course it should be thoroughly painted. Three or four successive coats of paint should be applied to a boat the first time it is painted, and before using, it should be launched, half filled with water, and allowed to stand for a few days so that the joints will swell and close properly. A mast six or eight feet high and a leg-of-mutton sail will enable a boy to sail before the wind in a quiet breeze, but rough-weather sailing should not be attempted in this style of open boat.

A Dory

A dory (Fig. 11), is somewhat similar to a sharpy but has higher sides and a narrower bottom, therefore it draws more water than a wide, flat-bottomed sharpy.

A boy can make a dory from twelve to sixteen feet long, but a fourteen-foot dory will be quite large enough to hold from four to six boys comfortably and safely. The sides should be twenty-four inches high and the bottom twenty-four inches across amidships.

The bottom is made from four six-inch planks battened across as shown in Fig. 12. The joints are leaded before the boards are brought together, and the fastenings are of galvanized nails clinched at the inside. The battens, of course, are on the inside, but the nail-heads are on the outside or bottom of the boat.

Fig. 11, Fig. 12, Fig. 13, Fig. 14

A stem and stern-piece (Fig. 13A and B) are cut from hard-wood, and to these the wooden sides are made fast at both ends. The bow and stern of a dory have more of a rake than those of a sharpy as may be seen in Fig. 11. The top of the bow extends out beyond the bottom at least from fifteen to twenty inches, while the stern overhangs the keel about twelve inches. The sides flare out nine inches at both sides amidships, so that the total width of beam is forty-two inches for a dory fourteen feet long.

Planks sixteen feet long are necessary with which to make this dory, for when they are sprung out at the sides they take up on the length. They can be six inches wide, and are made fast to ribs along the inside of the boat and attached with galvanized boat nails.

In Fig. 14 an amidships section of the dory is shown and the position of the seat is located. Along the top of the sides, to cap them and the upper ends of the ribs, rails two inches wide and three-quarters of an inch thick are made fast with boat nails. These rails should be of hard-wood, and they should be sprung into place and securely fastened.

A dory of this description makes an ideal fishing-boat where the water is rough, since it can be rowed either forward or backward.

A Sailing Sharpy

A rowing sharpy can be converted into a sail-boat by partially decking it over, making a mast-step, and providing it with a lee-board if a centre-board cannot be arranged in the middle of the hull. Fig. 18.

The half-deck will keep out the water that might splash over the sides or come over the bow and stern, and the row-boat features need not be altered nor the seats removed, as the rib and brace work for the deck can easily be fitted and fastened over the seats, and so give additional strength to the deck.

Fig. 15, Fig. 18

A SAILING SHARPY

Just behind the front seat and at the forward edge of the back seat cross-ribs are made fast to the sides of the sharpy. Between these, and eight inches from the sides of the boat, additional braces are sprung into place and securely attached at the ends, and provided with short cross-braces as shown in Fig. 15. The deck planking is nailed to these ribs and the seats under them give a substantial support to both the ribs and deck. The opening or cockpit will be six feet long and varying in width, as the side decks are eight inches wide and follow the line of the boat’s sides. Amidships it should measure about twenty-eight inches.

The braces and ribs are made of three-quarter-inch spruce boards five or six inches wide, and to bend them in the segment of a circle (as they will have to be for the side-ribs) pour hot water over two of them and place the ends on boxes with heavy stones at the middle to bend them down to the required curve. Allow them to remain in this position for several hours to dry in the sun; they may then be cut and fitted to the boat. The decking is done with narrow strips of pine, cypress, or cedar one inch and a half wide and three-quarters of an inch in thickness. They are bent to conform to the side lines of the boat, and if they are fitted nicely and leaded the deck should be water-tight after it receives varnish or paint.

If straight boards are employed in place of the narrow planking the deck can be covered with canvas and first given a coat of oil, then several successive thin coats of paint. The canvas should be tacked down over the outer edge of the boat and to the inner edge of the cockpit. A gunwale-strip an inch square is to be nailed along the top edge on both sides of the boat, and one inch below the top of the deck nail a guard rail along each side.

To finish the cockpit arrange a combing in place to project four inches above the deck, and make the boards fast to the inner side of the ribs with screws as shown in the illustration of the hull of sailing sharpy. Fig. 15.

Ten inches back from the bow-post bore a hole two inches and a half in diameter so that a mast will fit securely in place. The hole should extend through the deck and front seat, and a step-block with a hole in it to receive the foot of the mast must be nailed fast to the bottom of the boat. The hole in this block is oblong, and the foot of the mast should be cut on two sides so as to fit in the block as shown in Fig. 16.

Spruce or clear pine sticks are to be dressed and planed for the mast and boom, the mast measuring fourteen feet high by two inches and a half at the base, and the boom thirteen feet long by two inches in diameter, both tapering near the end.

The rudder is eighteen inches long, including the post, and ten inches high. It is fastened to a post of hard-wood three inches wide and seven-eighths of an inch thick. At the top of this an iron strap is fastened to hold the tiller as shown in Fig. 17A. The rudder is hung to the stern of the boat with pins and sockets, as shown in Fig. 17B, so that if it becomes necessary the rudder may be unshipped by lifting it out of the sockets or eyes. The rudder is fastened to the post with galvanized-iron pins ten inches long and three-eighths of an inch in diameter driven through snug holes bored in the wood as shown by the dotted lines in Fig. 17B.

It is impossible to hold a boat on the wind without a centre-board, but as this sharpy has none a lee-board will be required to keep her from drifting leeward. Fig. 18.

This board can be made five feet long, thirty inches wide, and hung over the lee side when running on the wind, where ropes and cleats will hold it in place. The board may be made of three planks banded together at the rear end with a batten, and at the forward end it is strapped across with bands of iron as shown in Fig. 18.

With a sail of twilled or heavy unbleached muslin this boat may be driven through the water at five or six miles an hour, and two boys can have a great deal of fun out of her. Care should be exercised in handling the boat; and be sure to reef the sail in case of a strong breeze.

A Centre-board Sharpy

When making a sharpy to sail in, a trunk and centre-board should be built when the keel is laid so that the cumbersome and unhandy lee-board may be done away with. The centre-board is housed in the trunk, through which it can be raised or lowered as occasion requires.

The arrangement of the trunk in the boat is shown in Fig. 19, and it is located so that the front of the trunk is three feet from the bow. For a centre-board one inch and a quarter in thickness the trunk should be one inch and three-quarters wide between sides, five feet long, and eighteen inches high. It is made of tongue-and-grooved boards one inch and one-eighth in thickness, and these are attached by stout screws to posts one inch and three-quarters square at bow and stern. The trunk is mounted on the keel, set in white-lead, and securely fastened with screws. A slot is cut in the keel the same size as the inside opening of the trunk—that is, two inches wide and about five feet long. The bottom planking is butted against the sides of the trunk at the middle of the boat as shown in Fig. 20.

An inner keel is laid over the bottom planking through the centre of the boat from stem to stern, and where it fits around the trunk it is cut out. Both the inner and outer keels are six inches wide and the exposed edges are bevelled with a plane. A sectional or end view of the trunk and its location in the keels is shown in Fig. 20, where the shading and lettering will designate each part.

The centre-board is four feet and nine inches long, thirty inches wide at the back, and twenty-four inches at the front. It is attached to the trunk with a hard-wood pin located near the forward lower end, and when it is drawn up it will appear as shown in Fig. 21A, but when lowered it will look like Fig. 21B.

The centre-board is made of hard-wood, several boards of which are pinned together with galvanized-iron rods three-eighths of an inch in diameter and driven through from edge to edge of the boards in snug holes made with a long bit or auger. The rods are riveted at both ends over washers to prevent the boards from working apart.

Fig. 16, Fig. 17, Fig. 19, Fig. 20, Fig. 21

A CENTRE-BOARD SHARPY

It would be better to let a boat-builder or carpenter make this board the proper size and shape to fit the trunk, for it is the most difficult thing to construct about a boat and somewhat beyond the ability of many boys. A large galvanized eye and a rope made fast below the middle of the board at the rear edge will provide the means for raising and lowering the centre-board.

The deck ribs and the planking are put in the same as described for the sailing sharpy.

A Proa

In the South Sea Islands the natives dig out the trunk of a tree, rig a lateen sail on a single stick, and arrange a counter-balance on the end of two poles in the form of a catamaran. With this rude contrivance they can outsail anything in the shape of a small boat such as our types of cat-boats and sharpies.

These queer craft are called proas, and a modified type that a boy can make is shown in the illustration Fig. 22.

This is a perfectly safe boat, and as it lies close on the water a great deal of fun can be had with one in comparatively smooth waterways.

To make the hull get two ten-inch planks sixteen feet long and spring them five feet from either end so that they come together at both ends and are separated fifteen inches along the middle for five or six feet as shown in Fig. 23. Between the sides place four or five spreaders, two of which should be stout enough to receive the bolts that will hold the two cross-braces or outriggers. Set a step-block for the mast, then plank the deck and bottom, using plenty of white-lead and lamp-wicking between the joints.

Fig. 22, Fig. 23

A PROA

The cross-braces or outriggers are of two-by-four-inch clear spruce six feet long, and their outer ends are bolted to a solid spruce timber twelve feet long, four inches wide, and ten inches deep. They should be sharpened at both ends with an adze, draw-knife, or a chisel and plane.

A mast twelve feet long and three inches in diameter is stepped seven feet from the bow, and to it a lateen rig is lashed fast having the gaff eighteen feet long and the boom fifteen feet in length.

A block and tackle at the bow will pay off the angle and another at the stern will regulate the position of the sail.

Cross-wires for braces may extend under the short decking to steady the outrigger and keep it from racking the braces, and three or four narrow planks can be laid across the braces close to the large boat on which the boy and a friend or two may sit when sailing.

A rudder may be attached to the stern of the large boat, as shown in Fig. 17, or an oar can be used to steer with.

Paint the boats any desired color, and for the first time give them at least three or four thin coats not less than two days apart, so that one will dry thoroughly before the next one is laid on. Never put thick or gummy paint on a boat; thin it down and apply two coats rather than one thick one.

A Lark

Perhaps the safest kind of a sailing-craft next to a catamaran is a lark with a broad beam and flat at both bow and stern. There are various forms of the half-rater, but the one shown in Fig. 24 is easy to construct and requires less careful fitting and joining than the hulls with pointed bows and long, overhanging sterns.

In general construction this hull is similar to the punt, and when putting it together the description for the building of the punt must be borne in mind.

Fig. 24

Obtain two clear cedar planks sixteen feet long and from fourteen to sixteen inches wide. Four feet from either end begin to round the lower edges of these side boards. Cut two spreaders five feet and six inches long and make them fast four feet from the ends of the sides as shown at Fig. 25. Between these spreaders attach an inner keel in the forward end of which an opening has been made. The keel is of hard-wood eight inches wide and the opening is three inches and a half in width and four feet and eight inches long.

A centre-board trunk is made and fitted into this opening as described for the sailing sharpy. Then braces are fastened between the sides and trunk as shown at Fig. 26.

Two bevelled hard-wood bow and stern pieces are cut as shown at Fig. 27. The ends of the boards are sprung in and attached to the ends of these pieces, and between them and the spreaders two more boards are fastened as indicated by the lines of nail-heads in Fig. 26. At the bow just ahead of the forward long cross-piece or spreader step the mast, and at the stern make the rudder-post trunk, taking care to use plenty of white-lead and lamp-wick so as to render the joints water-tight. Put a line of braces through the middle of the frame, then begin at the bow and plank the bottom with boards not more than three or four inches wide.

With the planking on and the braces, spreaders, and trunk in position the frame will appear as shown in Fig. 28. The deck planking is of strips seven-eighths of an inch thick and three inches wide. Begin at the middle of the boat by laying down a strip six inches wide by one inch and a quarter in thickness. Drive the deck planking close to this and smear the points with white-lead in which the lamp-wicking is embedded. Make all the fastenings with galvanized boat nails and drive the heads well into the wood with a nail-punch so they can be puttied and covered from the action of the water. An outer flat keel is laid along the bottom of the hull from the forward part of the cockpit or about under the mast. This leads aft to where the stern begins to round up and there it is stopped.

Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29

A LARK

This keel is attached with galvanized or brass screws, and a generous number are driven through the keel into the bottom edges of the centre-board trunk.

The rudder is made from galvanized sheet-iron as shown at Fig. 29, and is let into a one-and-a-quarter-inch round iron rudder-post and riveted fast. Just above the rudder-blade a collar of iron is welded to the post and this bears against the bottom of the boat. To prevent the rudder from dropping down a pin is passed through a hole in the post close to the deck and a large washer made fast to the deck will prevent the pin from chafing the wood.

Have the top of the post made with a square shank so that a tiller may fit over it and be held in position by a nut.

The rudder-blade should be twenty-six inches long and twelve inches wide.

The mast is fifteen feet long, cut from a four-inch spruce stick with draw-knife and plane. The boom is fifteen feet long, cut from a two-and-one-half-inch spruce stick, and the gaff is eleven feet long.

Extending out from the mast and attached to the deck is a short bowsprit five feet and six inches long. This is of two-by-three-inch spruce with the sharp corners rounded off beyond the end of the boat.

A wire forestay and two shrouds lead from mast-head to bowsprit and to both sides of the boat as shown in Fig. 24.

The main-sheet is seven feet on the mast, ten feet on the gaff, fourteen feet at the foot or on the boom, and eighteen feet on the leach. The jib is eleven feet on the forestay, five feet at the foot, and ten feet on the leach. The blocks are all of galvanized iron or wood, and three-eighth-inch Manila-rope should be used for the halyards and sheets.

This lark will ride well on the water, and if properly rigged it should be a very speedy boat.

A Power-boat

A novel feature for the propulsion of a flat-bottom boat or punt is shown in Fig. 30. Two small paddle-wheels attached to one shaft are hung out over the stern, and by means of a sprocket on the shaft connected to another and larger one on the seat frame the wheels are turned by the boys who mount the seats and work the pedals.

The punt is fifteen feet long on the deck line and six feet wide. The side boards are twelve inches wide, and with the thickness of the deck and bottom planking it will make the total depth about fourteen inches. Through the middle a strengthening rib is run the same size and thickness as the outer sides as shown in Fig. 31. This gives an additional rib to nail the sheathing boards to and also an anchorage to which the uprights forming the seat frame can be made fast with bolts.

The outriggers that suspend the wheels are of spruce two inches thick and three inches wide. They are bolted to the deck and at the outer end U-notches are cut for the axle of the wheels to fit into and capped with iron straps such as shown in Fig. 32. A blacksmith will make these for you from strap-iron an eighth of an inch thick and two inches wide. They should be bolted on when the wheels are in position, for they not only have to support the weight of the wheels but also stand the action of the water against them.

Fig. 30, Fig. 31, Fig. 32, Fig. 33

The wheels are each twenty-four inches in diameter and two feet long, and are made from wood seven-eighths of an inch in thickness. Seven blades eight inches wide are screwed fast to the sides or held in place with long, galvanized boat nails.

The axle is of spruce two inches square, and the wheel sides are provided with square holes through which the axle is driven as shown in Fig. 33. The ends of the axle are banded with iron, or copper wire may be wound round them to prevent their splitting. Into the ends half-inch round iron pins are driven which revolve in the bearings.

The seat-frame is thirty inches high and made from spruce rails three inches wide and one inch and a half in thickness. On the middle upright a large and small gear wheel are arranged on an axle with the cranks and pedals, and on the front post a small wheel is attached so that tandem power may be used on the paddle-wheels or one boy alone can work the boat. A rod and handle-bars may be arranged for the rear boy to grasp, and with a socket and set-screw it can be raised or lowered at will.

The forward bars have a cross-piece of iron at the foot of the vertical rod. This is two feet long, and from the ends of it running aft wires connect with the ends of a tiller for operating the rudder.

The rudder is hung between the wheels on a skag which is the rear extension of a short keel that should be nailed fast to hold the punt steady on the water.

Four canopy poles may be arranged to fit into sockets at the sides, and an awning six by ten feet can be supported over the machinery of the boat to keep off sun and rain.

This is a genuine boy-power boat, and as the wheels are substantially large and strong it can be driven over the water at quite a good speed. While it takes two boys to properly run it, that is not the boat’s capacity, for she will easily carry from four to six boys, their lunch-baskets, or a one-day camping outfit for a visit up the river or lake.

Chapter XIV

CATAMARANS

A Rowing Catamaran

For safety on the water, as nearly as safety can be assured, there is nothing to compare with a catamaran, for they are practically “non-capsizable,” and if not damaged to the leaking-point one or the other of the two boats will float and hold up several persons. Fig. 1 gives a good idea for a rowing catamaran that any boy can make from some boards and light timbers. It is provided with a seat and oar-locks so that the occupant may be seated above the water far enough to row easily.

The boats are fourteen feet long, eighteen inches wide, and fourteen inches deep, including the bottom and deck.

Pine, white-wood, cedar, or cypress, three-quarters of an inch thick and planed on both sides, will be necessary from which to construct the boats. At the bow the ends of the sides are attached to a stern-piece of hard-wood as shown in Fig. 2. Having poured boiling water on the forward ends, they may be drawn around a spreader sixteen inches long and twelve inches wide provided with two U-cuts as shown in Fig. 3. These are placed at the bottom, so that any water may be run to one end of a boat where it can be pumped out.

Fig. 1, Fig. 2, Fig. 3, Fig. 4

The first spreader is placed three feet from the bow, and three or four more of them should be fastened between the sides as shown in Fig. 4, the last one being three feet from the stern where the sides begin to curve up to the upper edge of the stern and to the deck.

The bottom is of three-inch pine or white-wood boards seven-eighths of an inch thick and well leaded in the joints and along the edges where the bottom and top boards join the sides. Before the top or deck is placed on, the interior of the boats should have two or three good coats of paint.

Three cross-stringers of spruce two and one-half by four inches and six feet long are securely attached to the boats, and on these the deck of four-inch boards is made fast as the illustration will show. Between the middle and forward stringer, at the ends, two boards are attached on which the row-locks may be fastened. These boards are eight or nine inches wide and cut away at the front so that they are not more than two or three inches wide.

The high ends are braced with round iron braces as shown in the illustration, and where the oar-locks are mounted a short plate of wood is screwed fast to the inside of each piece.

Near the front cross-piece a seat is built and braced with a board. With another boy at the stern sitting on the deck this catamaran will be well balanced and will prove very seaworthy, as well as a light boat to row.

A Sailing Catamaran

It is almost impossible to upset a sailing catamaran even in a gale, and for boys a boat of this kind affords a great deal of comparatively safe pleasure.

A catamaran is about the easiest sort of a boat to make, and no matter in what locality one lives there is always material at hand from which to make one as the wood is similar to that used for house construction.

Fig. 5 shows a side elevation of a safe catamaran, and in Fig. 6 the deck plan is shown. In Fig. 7 an elevation view of the stern shows the arrangement of the boats, deck timbers, and rudders.

The boats are fifteen feet long, eighteen inches wide at the middle, and two feet deep uniformly from bow to stern except for a short distance at the bow where the keel rounds up.

They are in the form of a V, and at the ends the angle becomes more acute, so that at the stem and stern the lines are vertical.

Four feet from both ends the deck line begins to curve as shown in Fig. 6, and in Fig. 8 the cross-braces are shown. They are cut in at the bottom to slip over the keel and to them the sheathing planks are made fast.

Fig. 5

In Fig. 8 the curved stem-piece and one side of planking is shown, and it indicates also where the curved stem-piece is joined to the keel, which extends in a straight line to the stern of the boats.

The keel is of hard-wood one inch and a quarter thick and six inches wide. The cross-braces or spreaders are of pine or other soft wood seven-eighths of an inch thick and made up of three pieces of wood with the grain running vertically.

The sheathing is of pine, cedar, or cypress three-quarters of an inch thick, planed on both sides, and three or four inches wide. Each board should be given a priming coat of paint before it is nailed to the braces, and where the planks are edged together white-lead and lamp-wick should be employed for calking. Galvanized boat nails are to be used for all the fastenings, but screws may be employed where it is necessary to have a very secure joint.

The cross-pieces that fasten the boats together are bolted fast by means of long bolts that pass through the timbers and deck and into stout pieces of wood that are nailed fast to the upper part of the spreaders as shown at A in Fig. 8. The boats are decked over with the three-quarter-inch planking, and to insure an absolutely tight deck the wood may be treated to a thick coat of paint and covered with canvas which is pressed down well into the paint and the edges tacked down over the sides of the boats. The canvas is then given a coat or two of paint and allowed to dry thoroughly, after which it can be sand-papered and finished with the desired shade of paint.

Three spruce timbers eight feet long, three inches thick, and six inches wide are bored with holes at the ends where the bolts pass through them and into the boats. Running parallel to the boats three timbers are laid across the brace-timbers and on top of these the deck planking is nailed. These pieces are two and one-half by four inches, and ten feet long, and are bolted down with long slim bolts.

The decking is formed of slats three-quarters of an inch thick and four inches wide nailed down to these stringers. Spaces half an inch wide are left between each one.

The bowsprit is of three-by-four-inch spruce left with its square corners for half its length but dressed round at the outer end. It is caught under the middle cross-brace where the end is bolted, and extending over the front piece it projects four or five feet beyond the bow ends of the boats. With wire-cable the bowsprit end is stayed to the bow of each boat, where turn-buckles can be caught into eyes in the stem-posts.

The mast is of spruce dressed from a four-inch spruce stick and slightly tapered at the top. It is fifteen feet long and stepped at the middle of the front cross-piece and on top of the bowsprit where it is held in place with a collar and iron braces as shown in the illustration. Fig. 5.

Standing rigging of wire-cable stays the mast from the top to both ends of the front cross-piece as indicated by the dotted line in Fig. 7.

Three short posts are made fast to the cross-pieces close to the decking, and holes bored in the tops of them will hold a safety-rope around the deck.

Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10

A SAILING CATAMARAN

The rudder-posts are of hard-wood one inch and a quarter thick and two inches and a half in width. They are three feet long and to the upper end of each a strap of metal is arranged to receive the tiller as shown in Fig. 9.

The tillers are of hard-wood three feet long and their inner ends are connected with a hard-wood stick by means of which the steering is done and both rudders operated at the same time.

The rudders, made from two sheets of galvanized iron, are riveted fast to the rudder-posts and are twelve inches high and fifteen inches long. Pins on the posts fit into eyes attached to the stern-post of the boats, and in Fig. 10 the arrangement of rudders, tillers, and connecting-rod is shown.

The main-sail is of twilled cotton that can be had at a dry-goods store for about ten cents a yard, and a rib should be sewed through the middle of each breadth to strengthen the cloth. The sail is nine feet and six inches on the mast, six feet on the gaff, thirteen feet on the boom, and fifteen feet on the leach. The jib, also of twilled cotton, is eleven feet and six inches on the forestay, eight feet across the foot, and eight feet and six inches on the leach. The blocks can be of galvanized iron but patent sheave-wood blocks are preferable.

For the halyards Manila-rope three-eighths of an inch in diameter will be the right size, and a half-inch anchor-rope will be stout enough, since a catamaran does not tug as heavily on an anchor as does a boat.

The wood-work of the boat and deck should be painted and the spars varnished. A pretty effect will be to paint the boat a rich olive green, with buff decks, and all the cross-pieces and deck planking in ivory white.

The ordinary sailing rules will apply to the handling of a catamaran. With these wedge-shaped boats you can sail quite close to the wind, but if round-bottomed and shallower boats are used they will have to be provided with centre-boards.

A Side-wheel Catamaran

The rowing catamaran can easily be converted into a side-wheel boat by removing the middle slat of the deck and making an opening through which a chain will lead to a cog or sprocket wheel on an axle.

At the outer side of each boat, between the middle and rear cross-braces, fasten two pieces of wood two inches wide and three inches high. Six or eight inches from the rear end make two U-cuts for a five-eighth-inch axle to fit into. At a blacksmith’s obtain two old carriage or buggy wheels, and cut the spokes so that they will be fourteen inches long from the hub. Dress one side of each spoke flat, so that a paddle may be attached to it with screws. The paddles are of hard-wood, eight inches wide at the outer end, six at the inner end, and six inches deep.

Have a blacksmith heat the ends of an axle and pound them square, then slip one hub over the iron, and with hard-wood wedges make it fast. The other wheel can be slipped on when the axle is in place and attached in a similar manner. It would be best to remove the old iron boxes from the hubs, so that a few screws can be driven through the hub and into the wedges to help in holding them securely in place.

In Fig. 11, which is a stern view of the rowing catamaran, one of the paddle-wheels is shown in place, and it also shows the location of the axle, the sprocket-wheel, and the chain that leads to the large sprocket-wheel by means of which the axle is turned.

An old bicycle chain and sprockets, together with the axle, cranks, and pedals, can be arranged on a frame, so that a saddle may be mounted the proper distance above the pedals. This arrangement is clearly shown in the illustration, which shows also the outrigger timbers at the stern, to which a sheet-iron rudder may be made fast. It is operated by a handle and bar, which turns the rudder by means of flexible wire-rope run through two deck-pulleys at the outer rear ends of the deck planking. The iron rod is held in place to the forward upright of the seat-frame with metal straps. At its lower end a wooden wheel having a groove is made fast, around which a wrap or two of the wire-cable is taken to hold the rudder steady.

Chapter XV

ICE-BOATS

A Sloop-rigged Ice-yacht

For travelling over the ice there is nothing to beat an ice-yacht, and some that have been constructed on the Hudson River are of gigantic size and power. Boats of this kind, and having the speed of an express-train, are dangerous for boys to play with, but the ordinary ice-boat that will go from ten to twenty miles an hour is within the ability of any well-grown boy to make and safely handle.

It is quite a simple matter to make a good ice-boat, for it is but a framework properly put together and bolted, on top of which a deck is nailed, with a mast-step arranged at the front.

Fig. 1 shows the elevation view of a moderately sized sloop-yacht; and in Fig. 2 the deck plan is shown, the joints and deck boards being clearly indicated. The triangular body of the boat is ten feet long and eight feet wide, and the bowsprit projects out six feet beyond the timber A in Fig. 2.

The frame is made of clear spruce timbers six inches wide and two inches thick. The timber A is eight feet long, BB are eleven feet long, C is five feet long, and DD are each three feet long.

At the front corners and at the back the timbers are bevelled, as shown in the plan drawing, and they are joined with long bolts as indicated by the dotted lines. Timbers C and DD are set in place and securely fastened with long, steel-wire spikes. The bowsprit E is mounted against timber C and laid over timber A, to which it is bolted fast. A half-inch iron pin is driven in the butt end of the bowsprit, and it fits into a hole made in timber C.

Fig. 1

The bowsprit is cut from spruce two inches and a half by four inches, and tapered at the outer end, where a withe having three eyes is driven on. The top eye receives the forestay and the side ones the bobstay cables that run to the corners of the boat, where they are drawn taut with turn-buckles. The shoe-blocks FF are twenty-four inches long and three inches square, and are bolted to the timbers A and B as shown.

At the stern a triangular block is mounted between the ends of the timbers BB, through which the rudder-post will pass. The decking planks G are then attached to the frame with screws or steel nails.

The mast-step is made by attaching two twelve-inch pieces of plank eighteen inches long and an inch and a quarter thick to the inside sides of timbers DD. Across the top of them attach another plank, and in the middle of it cut a hole three inches and a half in diameter, or large enough to receive the mast. In the bowsprit, directly under the large hole, make a small one to receive a three-quarter-inch pin. This iron pin is to be driven in the bottom of the mast so that six inches of it projects beyond the bottom of the stick. These will form the mast-step, and when the mast is in place and held by the forestay and shrouds it cannot jump out. Iron stanchion-rods are attached to the top of the mast-plate and to the inside of timber A as shown in the illustration.

The shoes are of tire, steel and will have to be made by a blacksmith. The front ones are thirty inches long, curved up at the front, as shown in Fig. 3A, and bevelled at the bottom so as to form a gripping or cutting edge. When mounted the lower edge is at the outside of the boat. Shanks with bolt-tops and collars pass through the holes made in the shoe-blocks FF, and are securely held with nuts screwed down on washers so as not to cut the wood.

The rudder (Fig. 3B) is a chisel-edged piece of steel twelve inches long turned up at both ends and mounted at the foot of a shank C, which is provided with a collar, a square shoulder for the tiller D to fit on, and a threaded top so that a nut will hold the tiller in place. The shoes can only be made of steel or iron, as wooden ones are useless.

Fig. 2, Fig. 3, Fig. 6, Fig. 7

The mast is twelve feet high and three inches and a half or four inches in diameter, slightly tapered near the top. The gaff is six feet long and the boom twelve feet in length. The main-sail measures eight feet on the mast, five feet on the gaff, eleven on the boom, and the leach is thirteen feet long. The jib is ten feet on the forestay, six feet at the foot, and eight feet on the leach. This sail area will present a good surface to the wind, and with an ordinary breeze the boat should make from eight to twelve miles an hour with two or three boys on the deck.

The rigging is done in the same manner in which boats are fitted out. The spars should be varnished and the boat can be painted or varnished, as a matter of choice. All white wood-work with black metal parts, or a red frame with cream-colored deck and black metal parts, are pleasing combinations, but a boy’s own ideas can be carried out with the paint-pot and brush.

A Twin-mast Ice-boat

The twin-mast ice-boat shown in Fig. 4 is the same size as the other one, and built in the same manner except that timbers DD in Fig. 2 are omitted and a smaller deck is laid at the stern.

One foot back from the corners three-inch masts are stepped in holes made in timbers BB to receive half-inch iron pins driven in the foot of the masts. The sticks are eleven feet long and lashed together at the top or bolted with several long, thin bolts as shown in the illustration. They pitch forward at a slight angle, or so that the forestay is eleven feet long.

The gaff is sixteen feet long and the boom eighteen feet in length, and the leach of the sail is fourteen feet.

The gaff is hauled up into the crotch formed by the masts, and a set of blocks and tackle at the bottom of the sail on the boom and the deck will haul the sail into the proper position. It then swings free between the masts, and the jib and main-sail form one large sheet, so that when the main-sheet goes to one side or the other the jib always takes the opposite position and the wind is playing on the entire sail at all times.

Fig. 4

This is a very easy rig to handle as it relieves the steersman from the bother of the jib-sheets which are annoying in a stiff breeze.

Scoots and Scooters

Scoots and scooters are the latest wrinkle in ice-boats. Down on the Great South Bay, on the southern side of Long Island, they speak of them in fun as “ice-water boats.” The advantage in a boat of this kind lies in their ability to sail on poor ice or to go across water that is partly open and frozen as many of the bays along the coast are at times.

The scoot shown in Fig. 5 is in the form of a sharpy, but the bottom curves up at the bow so that if it is sailing on the water and comes to the edge of an ice-floe that is not too high out of the water the wind will blow the boat up on the ice and it will sail along on its runners at double its previous speed. In the same manner when it comes to open water it will slip off the ice quite comfortably and become again a marine craft.

The model and descriptions of a centre-board sharpy may be taken for the construction of the boat, except that there is no stem or bow-post and the bottom rounds up the same as the side boards curve in. The bow is therefore nearly a point. This construction is shown in Fig. 6 (page 252), which is a view of the sides and bottom only, the deck planking being fastened down afterwards.

The boat should be calked with white-lead and lamp-wicking and as carefully made as a water-boat, for it must be absolutely tight and water-proof. The deck may be covered with canvas and painted, or it may be of varnished or painted wood.

The hull should be from twelve to fifteen feet long and from four to five feet wide across the widest part. It is fifteen inches deep, and is provided with a centre-board and trunk the same as described for the sailing sharpy on page 221.

Fig. 5

The mast is twelve feet long or about ten feet above the deck; the gaff is seven feet and the boom eleven feet long. The bowsprit is four feet long and is bolted to the forward deck, and from the end of it to the top of the mast a light, wire-cable forestay is made fast for the jib to run on.

The sails are made of twilled drill or very heavy unbleached muslin, and in the main-sheet one or two sets of reef-points will be necessary. The main-sail measures seven feet on the mast, six feet and six inches on the gaff, ten feet and six inches on the boom, and thirteen feet on the leach. The jib measures seven feet on the forestay, four feet across the foot, and six feet on the leach. The sail-cloth should be ribbed to strengthen it and a light rope run around all the edges of both sails.

The shoes are made of light, broad tire iron or steel twenty-four inches long and shaped so that the front part will bolt fast to the outside of the scooter sides and the rear ends will lie against the bottom of the boat where they can be bolted fast. The shape of these shoes is shown in Fig. 7A (page 252), and any blacksmith will make them for you at a nominal cost. The rudder is of stout sheet-iron mounted in the end of a shank as shown at Fig. 7B (page 252). Its fan-tail permits it to swing the boat in the water and its lower edge will guide it on the ice.

The rudder-post should be attached to the skag which is arranged at the under side and rear of the boat, and with a short iron tiller fastened as shown in Fig. 3C and D the rudder may be swung.

When sailing on the ice the centre-board should be hauled up as high as it will go, for it is of use only when the boat is in the water.

A scoot is a cranky boat on the ice as the runners or fore-shoes are closer together than on an ice-boat with a triangular frame. Going before the wind it is all right, but when sailing on or up into a stiff wind it will keep a boy moving to hold his balance and steady the boat.

The shovel-nosed scooter shown in Fig. 8 is an easier boat to handle as it is broader than the sharpy, but it is not quite so fast, being slightly heavier.

Fig. 8

It is twelve feet long over all with a five-foot beam and fourteen inches high including deck and bottom. The side boards are twelve inches wide, curved up at the bow, and bent in at the stern as shown in the illustration.

Twin masts are stepped two feet from the bow and lashed together nine feet above the deck. The rigging is the same as for the twin-mast ice-boat, and the sail measures twelve feet on the gaff, fourteen feet on the boom, with the leach eleven feet in length.

A small centre-board mounted in a trunk will be necessary for water sailing, and with several coats of paint the scooter will be ready for use.

A Wind-runner

An interesting boat for a boy to sail is a wind-runner like the one shown in Fig. 9.

Fig. 9, Fig. 10

Two spruce planks twelve feet long and ten inches wide are attached to three battens and separated four inches. The stern batten is four inches high and two inches wide, and through a hole made in the middle the shank of the rudder-post extends, from the top of which the tiller works.

The front ends of the planks are rounded and mounted on a triangular framework six feet across at the front and extending back about five feet from the ends of the planks.

A mast three inches in diameter and nine feet high is stepped through a collar and into a block attached to the back of the front cross-piece as shown in Fig. 10. An iron pin at the bottom of the mast drops into a hole made in the block and the backstays hold the mast in place.

A yard-arm eight feet long supports a square sail six feet wide, which is caught at the lower ends to the outer ends of the triangle frame.

The shoes attached to the triangle frame with bolts are fifteen inches long and the rudder-blade is ten inches long.

This is a rapid sailer before the wind, and with a little manoeuvring the runner can be made to sail on the wind, though it will not run nearly as close to the wind as the ice-boats or scoots. Paint or varnish will give the wood-work a good finish, and under a stiff breeze this wind-runner will carry four or five boys.

Chapter XVI

HOUSE-BOATS AND RAFTS

A House-punt

A house-punt of very simple construction is shown in Fig. 1. The punt is from sixteen to twenty-four feet long according to the size desired, but for a party of four boys it should be twenty-four feet long, eight feet wide, and two feet deep with a cabin eight feet high.

The sides and middle rib should be of pine, spruce, or white-wood one inch and a quarter thick, free from sappy places and knots. If the boards cannot be had as long as twenty-four feet nor as wide as two feet, use two boards twelve inches wide and make one joint at the middle of the lower board and two in the upper board as shown in the drawing of the side elevation (Fig. 2). Six inches down from the top at either end and thirty inches in at the bottom cut the sides as shown so that the punt will have a shovel-nose at both ends and can be poled or sailed in either direction. Make a third or middle rib the same size as the side board. This is to be placed at the middle of the punt so as to receive the sheathing and deck planking. The arrangement of this middle rib and the side boards is shown in Fig. 3 and at A in Fig. 3. A batten is shown to which the upper and lower boards of a side are nailed fast. If the two boards are used it will be necessary to arrange these battens along the inside of each side about eighteen inches apart. They should be of tough wood five or six inches wide, an inch and a quarter thick, and two feet long.

Galvanized boat nails should be used, and when driven in from the outside they should be clinched at the inside. Good boat nails are of malleable iron stiff enough to go through hard-wood but ductile enough to be turned over at the ends with a light hammer and quick, sharp blows.

The sheathing and deck planking should be not less than four inches and not more than six inches in width, and before it is put on it should be well sun-dried to take out all moisture. It should then be given two good coats of paint on both sides to make it water-proof.

Lay the sides and middle rib bottom up and begin to sheath from one end. Lumber sixteen feet long should be used, and this, when cut in half, will make two pieces from each length. If matched boards are used smear the edges with white-lead before the boards are driven together, but if straight-edge lumber is employed it will be necessary to lead and wick the joints. This is done by taking a piece of round iron one-quarter of an inch in diameter and eight inches long and bending it as shown at Fig. 4A. Lay this on the flat edge of each board at the middle and heat the iron so as to form a groove as shown at Fig. 4B. The wood, having been beaten in, forms a gully in which a string of lamp-wick can be laid as shown in Fig. 4C. The groove must not be cut with a chisel for then its effect would be lost. The object of this treatment is that when the punt is in the water the joint swells forcing out the wood against the lamp-wick and making a water-tight joint. The edges of the wood and the wicking must be well smeared with white-lead in order to properly calk the joint.

Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7

A HOUSE-PUNT

Between the middle rib and each side an inner keel should be arranged so that each plank can be nailed fast to it. This will act as an additional brace to hold the sheathing planks in place and make the bottom more rigid. This inner keel should extend from end to end of the punt, and short pieces may be laid inside the bevelled ends to lend added strength.

At each end a spruce plank eight inches wide is made fast with long boat nails, first leading all the joints to make them water-tight. The deck planks are laid on the same as the sheathing, and to brace them from underneath, in the space between the middle rib and the sides, two-by-three-inch spruce rails are propped on short sticks which are nailed to the inner keel and to the rails as shown at Fig. 5. These under props should be arranged about eighteen inches apart, the entire length of the punt. Groove the upper edges of the end and side planks with the iron, then lay the lamp-wicking in, lead, and nail down the planking, taking care to put the nails in straight and true. When the punt is finished give it several good coats of copper paint on the bottom and sides and several coats of good marine paint on the deck.

To construct the cabin lay down the sill-joist of two-by-three-inch spruce, making the plan fourteen feet long and seven feet and eight inches wide (Fig. 6). To this nail the uprights and bracing timbers, forming the sides and ends as shown in the drawings of the side and end elevation (Fig. 7). The door spaces at the ends should be three feet wide and seven feet high, so that when trimmed and the doors hung the actual size will be two feet and eight inches wide by six feet and ten inches high.

The window openings are two feet wide by two feet and six inches high, and between all the uprights braces are nailed fast to prevent the frame from racking. The arrangement of framing timbers is quite clearly shown in the drawings, and in the deck plan (Fig. 6) the arrangement of the bunks is indicated. Across the top of the framework one-and-a-half-by-six-inch beams are laid having their upper edge crowned as shown in the end elevation (Fig. 7). Over these the roofing boards are laid lengthwise, and on top of them canvas is drawn and tacked down all around the edges with copper tacks.

The roofing boards may be of three-quarter-inch stuff planed on both sides and from two to four inches wide, whichever is the easiest to obtain. The boards should extend over the ends and sides for two or three inches so that a finishing moulding can be made fast under the boards. Give the top of the boards two good coats of paint, then stretch oiled canvas over the top and tack it fast. Several coats of paint will finish the canvas and make it hard enough to walk on, for in pleasant weather this upper deck will make a pleasant place to spend many hours under the shade of a canopy. The cabin sheathing is of narrow matched boards planed on both sides and as free from knots and sappy places as it is possible to get them. The boards must be thoroughly sun-dried before they are laid on and nailed fast, and it would be well also to paint the matched edges so that moisture may not get in and swell them. The inside and outside of the cabin is to be painted to protect the wood from moisture, and if painted a light tint of any color, or white, it will be cooler in summer when the sun is shining than if coated with a dark color. Dark colors absorb light and heat while light ones reflect or shed them.

The window-sashes should be arranged on hinges so that they may be swung in and back against the inside of the cabin and hooked. Or, by cutting away a part of the upright, the sash may be arranged to slide. Wire screening may be tacked over the window-frame at the outer side to keep out flies and mosquitoes, and screen doors can be made also for the front and rear doorways—to swing in, as the wooden doors swing out.

Over the rear deck a canopy is arranged on poles. This is similar to a tent fly for camping, and will shed the sun and rain from the deck when the cook is preparing meals.

A small cook-stove may be arranged inside the cabin, but if it is not convenient to carry coal in a box on the deck an oil-stove will answer every purpose.

Two bunks may be built in on each side, one above the other, and four wire springs may be arranged to rest on battens driven across the bunks at the head and foot. A small hatch should be cut in the rear deck and another one through the cabin floor so that a few things may be stored in the hold. The aft hatch should be provided with a suction-pump so that any water that leaks in can be readily pumped out.

Rings, cleats, and ropes should be provided for the punt, and two anchors would be better than one, especially when near the shore or in shallow water, to hold the punt from swinging, which it is sure to do if there is any wind or waves. Always anchor it so that the wind is blowing on one end and not broadside as it is a strain on the anchors and ropes to hold a boat broadside on.

By erecting a spar fifteen or twenty feet high and four or five inches in diameter, a square-sail can be rigged on yard-arms so that the house-punt can be sailed before the wind. A long oar will be necessary to steer with, or a portable rudder may be made and hung to the stern with pins and ropes.

A house-punt of this description will be a very great source of enjoyment to several boys in the summer-time, and in the winter when not in use the punt can be hauled out on shore, the windows boarded up, and old canvas drawn over the decks to protect them from the sun.

A House-raft

Almost any boy can build a fairly good boat, even if it is a flat-bottomed sharpy. But to build a raft of the proper size, and on it a house that may be comfortably occupied, will require the aid of a good carpenter who understands construction, and under whose direction several boys can work to good advantage.

For a party of four or five young fellows, a very convenient and commodious house-raft at anchor is shown in Fig. 8. The raft is about thirty-eight feet long and twelve feet wide, while the house is twenty-three feet long and twelve feet wide by nine feet high from raft deck to top of house.

These dimensions will, if necessary, permit the raft to be taken through any canal, and without mast and deck-rails it will pass under the road bridges that span the canals.

If the house-raft is to be used on canals only, it will be better not to have the mast, and the deck-rail may be arranged so that it can be removed quickly before passing under a low bridge.

The mast is for use on lakes, bays, or rivers only, where a large square-sail can be hoisted on a yard-arm, and by means of which the raft may be made to sail before the wind slowly, so that its position may be changed from time to time.

The construction of a house-raft is quite simple, and will not require the services of a boat-builder, as the carpenter can build both the raft and the house on it. To begin with, it will be necessary to obtain four straight logs thirty-eight feet long, as sound as possible, and not wind-racked. Two of these logs are to be laid with the butt end at the stern, and the other two with butts at the bow, thus giving equal spaces between each along the entire length of the raft.

Across the ends of these logs nail a temporary strip to keep them the proper distance apart; then at right angles lay four-by-twelve-inch timbers on edge about two feet apart, and spike them securely to the logs. This part of the work should be done in shallow water, where the logs can be near enough to shore for the workers to stand on bottom.

When laying these cross-timbers it is always well to place the first ones about five feet apart, and stand a straight timber across from one to the other parallel to the logs, so that as each succeeding timber is laid it can be levelled by either cutting slightly into the log or building up the bearing, as it may require.

Fig. 8, Fig. 9, Fig. 10

A HOUSE-RAFT

Having timbered the logs the entire length, begin to plank or deck the raft with one-inch-and-a-quarter spruce boards six inches wide, laying the strips from bow to stern.

Fig. 9 will show the position of the logs with cross-timbers above, on top of which the planking may be seen. To the under side of the cross-beams and midway between the logs, planks should be fastened that will run the entire length of the raft. These are to form a bearing against which the upper bilge of the barrels will rest. Fig. 9 shows the heads of three barrels, each the end one of a number that are chained together and run all along under the raft to give it sufficient buoyancy to counteract the displacement that would be caused by the weight of the house and occupants.

Fig. 10 is a side view of those same barrels, showing the position they occupy and the distance from one to the other. Oil-barrels are the best for this purpose, and after being well bunged they should be treated to several good coats of copper paint before being drawn under the raft. It would be well to leave a gallon of oil in each barrel, as it keeps the glue sizing in good condition, and prevents it from yielding to the dampness caused by the water, the pressure of which might in time find its way through small cracks or openings.

A few yards of wrought-iron chain sufficiently heavy for the purpose can be obtained and cut into short lengths, and each end should be fitted with an eye-plate with four holes in it, which plates are to be fastened to the ends of the barrels with short, fat screws, having first thoroughly smeared the back of each with white-lead. The barrels should be arranged about one foot apart, and if the logs are from twenty-four to thirty inches in diameter at the butt end there should be just enough space to accommodate the three rows of barrels between the four logs as shown in Fig. 9.

Across the logs at the bow and stern attach the planking, to extend down a foot below the water-line, and with short uprights against which to nail, fasten weather-boards along the sides of the raft to cover the logs and come up flush with the deck line.

Seven feet in from the ends of the raft lay cross-stringers, three by six inches, at distances of eighteen inches apart, on which to place the floor of the house. This flooring may be of narrow spruce boards, planed on one side and having matched edges.

The uprights for the house construction are placed on the flooring beams and sills, and securely pinned to them, and the cross-beams at top of house should be placed the same distance apart as the floor beams to sustain the weight above, as the top of the house or upper deck will be the open-air living-room. The side elevation (Fig. 11) shows the position of windows that will be placed on both sides of the house, and another illustration (Fig. 12A and B) shows both front and rear elevations of the house, as well as the location of companionway and deck-rails.

The deck plan (Fig. 13) shows the arrangement of the house and how it is divided into the several compartments.

Fig. 11, Fig. 12, Fig. 13

DETAILS OF A HOUSE-RAFT

In the front, the dining and living saloon is a room measuring about eight feet in width and eleven feet in length. At one end a couch is placed which, if necessary, can be used as a bed; and close to it are two large windows—one overlooking the fore-deck, the other giving a view from the side of the house. At the other end of the room a neat china-cupboard is built into the corner, and in the opposite corner the front door and a window are placed. One of the illustrations is an interior view of this cabin, showing how comfortable and attractive it can be made to appear. As it is a sort of general mess-room and living-cabin, it can be decorated and kept as such in a ship-shape manner.

Fishing-rods, guns, and nets against the wall will take up little space, while in the locker under the cupboard a variety of sporting paraphernalia can be stored.

Leading aft from this saloon, a passageway opens into the galley, a room six feet and six inches wide by eleven feet long, where all the cooking-utensils and stores are kept.

This galley should be painted a light gray or ivory white, with several coats of paint mixed for outside use, so the wood-work can all be wiped down with a damp cloth when necessary. White is always the best color for a kitchen or galley, and it has the appearance of cleanliness that no other color will give; it will be found to keep a room much cooler also, and for that reason it is recommended. A rug or rag carpet will be an acceptable covering for the floor, which should be treated to several coats of yellow-ochre paint.

Between the dining-saloon and the galley two state-rooms are placed, so the passageway runs between them, and from which the doors open that lead into them. These rooms are each about eight feet and six inches long by nearly five feet wide, and two berths, each three feet wide, are built in the rooms. Both rooms have large windows, and spaces for corner wash-stands; and as the doors open against the ends of the berths, there is no lost space nor wasted room.

Rows of hooks will accommodate clothing, and the lower berth should be at least twenty-two inches up from the floor to allow room to slide a trunk or two under it. These rooms can be ceiled and papered, or painted, as a matter of choice, but a few coats of varnish will render the wood-work in good shape and proof against dampness.

All the windows and doors in this boat can be of stock sizes, so that the cost of special sizes can be avoided. The sheathing may be of cedar shingles or of clapboards, as the cost is about the same. The clapboards should be painted, and will look better than shingles, although a very artistic effect is had by staining the shingles and painting the door and window casings in shades to match, preferably in the brown and olive-green shades.

The flooring of the upper deck should be of regular flooring boards with matched edges and planed on one side. Over this flooring canvas should be stretched and tacked, and afterwards given two or three coats of oil and varnish to make it water-proof, and finally treated to a coat or two of lead-colored paint. The seams should all be well laid down, and fastened with copper or tinned tacks, driven about two inches apart. It would be well to give the boards two good thick coats of paint before the canvas is applied, so that when the oil soaks through the canvas it will soften the paint somewhat, and help to hold the canvas in its proper place.

Leading from the fore-deck to the upper deck a stair or companionway is built, and anchored securely in place to the front of the house. The platform at the head of the staircase is braced over the front doorway by means of two iron rods that act as brackets, and which are screwed securely both to the under side of the platform and to the door-casing. This can be an open stairway composed of two side ways and eleven treads, the ends of the treads being anchored in grooves cut in the ways, and securely fastened with screws.

The rail around the deck is of common iron gas-pipe held in place by sockets and uprights. If the piping cannot be had, then hickory or hard-wood poles one inch and a half in diameter may be employed and held in place by uprights three inches wide and thirty inches high, through which two holes have been bored to receive the poles.

Around the fore and after decks a stringer three by six inches can be spiked down, and to the sides near the bow and stern large cleats should be bolted fast, by which the raft can be moored. Amidships at the bow a large post may be fastened, around which to attach a tow-line if necessary, and at the stern a rudder is arranged, with the post projecting up through the deck for a distance of a foot or eighteen inches. A mortise should be cut in the top of this post, into which the end of a tiller can be inserted when steering the craft, either when in tow or under sail.

A mast twenty-five or thirty feet long can be stepped amidships against the front of the house, and strapped fast to the upper deck with a horseshoe band. A step-block can be fastened to the deck into which the tenoned end of the mast will fit.

A yard-arm about twenty feet long, or longer if desired, can be arranged to hoist nearly to the top of the mast, and from which a large square-sail may be rigged so the lower corners will fasten to outriggers four or five feet long that can be temporarily braced at the sides of the boat when sail is set. This pole affords a good place from which to fly club or college colors, and from which to suspend lines of colored and Japanese lanterns to illuminate at night. This mast should be six inches in diameter at the base, and gradually taper near the top, and if a sail is to be used frequently, it would be a good plan to bobstay and shroud the stick with some standing rigging, so as to relieve it from the entire strain of a large sail.

The top of the house affords a living-room twenty-three feet long and twelve feet wide, and in that space a number of chairs, a table, hammocks, and benches can be accommodated.

For lake, river, and bay use this deck can be covered by a large awning, supported at the centre by a ridge-pole, and at the sides by upright posts that hold a stout wire in place, over which the striped awning canvas is caught. Drop-curtains at the sides will be convenient to ward off the bright sunlight, and this deck-room will be found the most delightful place to spend the pleasant days and evenings.

Along the inland waterways a raft of this description is a most desirable craft, as it can be towed from place to place, and for pleasure purposes its value cannot be overestimated, as it is a base for hunting and fishing as well as a retreat from village life; and the pleasure and comfort that can be had from a raft like this can well be appreciated when once tried.

To build a house-raft on these plans is not a difficult nor an expensive piece of work, and outside of the cost of the lumber, timber, barrels, and logs the amount is limited, unless finish is contemplated. With materials at hand and the help of three or four good workers, it should not require more than a week to construct this raft and house, and if fitted and painted in the manner described the cost should not exceed from two hundred to three hundred dollars, including all labor and material, according to the locality in which it is constructed.

A Float

In the spring, when every one who owns a boat of any sort is painting and repairing his craft, boat-houses, and floats, a few suggestions in regard to the floats will be found of practical value.

My chum and I own two canoes and a row-boat. The first year we built a boat-house, which exhausted our funds, and we were obliged to wait till the next spring before we could consider the expense of making a float. Most floats are constructed of spars on logs, with a mooring on top.

As we prepared to make the float ourselves, we wanted to find the easiest and cheapest way of doing so. The spars were costly, and, besides, are clumsy, and for a float of adequate size they would have to be so large that we could not move them alone.

As we lived in the city we could not get logs, or, if we could, we should have had a big bill for cartage. It was while we were painting the boat-house one afternoon that we saw an empty barrel go floating by. My chum said he had an idea that we could make a float after all. We went to one of the grocery stores and got four new flour-barrels, with the heads, at a cost of twenty-five cents apiece.

We took them, two by two, over to the boat-house, and then went to a near-by lumber-yard and got three two-by-three sixteen-foot joists, which cost us fifty-five cents, and one hundred square feet of boards such as are sold at thirty dollars a thousand feet. Some nails and our tools, and we were ready to begin work.

First we laid two barrels end to end about two feet apart; then about twelve feet from them we laid the other two in the same way. Then we took two of the joists and laid them on each side of the barrels on edge. Taking the other, we cut it in two pieces six feet long, which left a waste space of four feet in length. We then nailed the two sixteen-foot pieces and the two six-foot pieces together in the form of a rectangle as in Fig. 14.

Fig. 14, Fig. 15, Fig. 16

Then, having propped the barrels to keep them in place, we lifted this hollow rectangle onto them so that it rested on their sides as in Fig. 15. Cutting the four-foot joists into four one-foot pieces, we utilized them as corner braces.

Next we fastened the barrels to the frame, and, after painting them with a coat of thick paint to fill the cracks, we launched the craft. Then we covered the frame with the boards, laying them crosswise. A ring-bolt in each corner and a roller in the middle, and an old hose-pipe tacked around the edges, completed the float as shown in Fig. 16.

This we found was a most excellent float, and, above all, it was light, could be hauled out on the bank easily, or stored during the winter.

As it rose and fell with the tide there was no trouble in launching the boats at any time, whereas with a dock the pleasures of launching at low-water are too well known to be described.

Below is a table of expenditures:

Barrels, at 25 cents each $1.00
Joists, at $20 per M .55
Boards, at 30 per M 3.00
Nails, at 4 cents a pound .20
Paint, at 20 cents a can .20
Rings, at 20 cents each .80
———
Total$5.75

While the prices of these articles, particularly the lumber, have risen somewhat, the cost of this float will remain extremely small.

Chapter XVII

MARLINE-SPIKE SEAMANSHIP

Ropes may be joined to one another either by knotting or by splicing. If the rope belongs to the running rigging (such as halyards, sheets, etc.) of the vessel, it will be necessary to put a splice in it, as a knot would refuse to render (pass) through the swallow (opening) in the block. There are three kinds of splices in general use—namely, the long, the short, and the eye-splice. When joining running rigging a long splice is always employed, as it does not increase the diameter of the rope, and when neatly made cannot easily be detected. The short splice is very bulging, but it can be made quickly and is employed in all cases where the rope does not pass through blocks. The eye-splice is used for making a permanent loop in the end of a rope, such, for instance, as is seen in the hawsers by which steamboats are temporarily made fast to a dock, the loop or eye being thrown over the spile on the pier. Let us first consider the making of the latter splice.

Splices

The Eye-splice (Fig. 1).—Open the end of the rope and lay the strands 1, 2, 3 upon the standing part as shown in A in Fig. 1; now push strand 4 through the rope as shown in B; next thrust strand 5 over the part through which the former was passed, and last push the strand 6 through on the opposite side. Repeat this once, then cut off the remaining ends, and the splice will appear as in C.

FIG. 1. THE EYE-SPLICE

FIG. 2. THE SHORT SPLICE

FIG. 3. THE LONG SPLICE

The Short Splice (Fig. 2).—Hold the rope B (Fig. 2A) in the left hand; pass the strand 4 over 1, and having thrust it through under 3, pull it taut; take strand 5 and pass it over 2 and under 1; pass strand 6 over the first strand next to it and under the second. Shift the rope around and treat the other side in the same way, and the result will be as shown in Fig. 2B. This single tucking of the ends is not sufficient for strength, so repeat the operation once, then cut off the ends of the strands.

The Long Splice (Fig. 3).—Unlay (untwist) the two ends to be joined some two or three feet, and place the ends together in the same manner as explained for the short splice. Now take the strand 1 and unlay it as far back as A, and in the groove left in the rope wind the strand 2; unlay the strand 3 and in its place lay-up (wind) the strand 4. At this stage the rope will represent the appearance of Fig. 3B. The middle strands, 5 and 6, will now be knotted with a simple overhand knot Fig. 3C, care being observed that the knot is formed to follow the lay (form) of the rope. Next divide these two strands equally as shown in Fig. 3D, and tuck them into the rope on the same principle as explained for the short and eye splice. The remaining strands will be treated in the same manner, after which stretch the rope well and cut off the ends.

Knots

Reef Knot (Fig. 4).—This commonly used knot is also known as a flat knot and square knot, and is one of the most valuable of the many employed. As its name implies, it is used to tie the reef points of a sail, the stops (short lengths of rope) used to secure the jib to the bowsprit when the sail is lowered, etc. Should a person find it necessary in order to affect an escape from a burning building to fashion a line by tearing sheets into lengths and tying them together, this knot should be employed, for it will not slip and the bulge where the strips are tied will afford good hold for the hands. In order to make the knot, simply tie an overhand knot, then pass the ends so that they shall take the same lay (form) as the crossed parts beneath. Should the ends be passed (crossed) wrong, an Old Granny knot (Fig. 5) will be the result, and this knot will capsize (pull out of shape) and slip as soon as a strain is put upon it.

Bowline Knot (Fig. 6).—Take the end (1) of the rope in the right hand and the standing part (2) in the left hand; lay the end over the standing part and turn the left wrist so that the standing part forms a loop (4) enclosing the end; now lead the end back of the standing part and above the loop and bring the end down through the loop again as shown. A bowline of this kind, sometimes called a single bowline, is employed in a variety of ways. Seamen sit in the bight (3) of this shape to be hoisted aloft under certain circumstances, and two towing hawsers are often made fast to each other by two bowlines, the bight of one being passed through the bight of the other.

Bowline on a Bight (Fig. 7).—Double the rope, and take the double end (1) in the right hand, the standing part (2) of the rope in left hand; lay the end over the standing part, and by turning the left wrist form a loop (3), having the end inside; now pull up enough of the end (1) to dip under the bight (4), bringing the end towards the right and dipping it under the bight, then passing it up to the left over the loop and hauling taut. This knot is employed in the same way as explained for the single bowline, and it may also be stated that it affords much amusement as a puzzle, for if the standing part (2) is held and the knot presented to be untied, only those familiar with the way in which it is made will be apt to discover the secret of dipping the end (1) back and undoing the knot by handling it in a reverse manner to that described for its manufacture.

Running Bowline (Fig. 8).—The only difference between this knot and the one described under the head of “Bowline” is that the end (1) of the rope is taken around the standing part (2), and then a single bowline (3) is tied on its own part. As will be understood by reference to the diagram, this forms a slipknot or lasso, and in fact it is employed for the same purposes as the latter. When a shark is hooked by sailors the great fish is hauled up until his head is out of water, then a running bowline is made around the hook-line and allowed to fall down over the fins, when it is hauled taut and the strain taken off the hook and line, so that the danger of the fish escaping may be greatly lessened, for the line is apt to break from the thrashing of the creature or the hook pull out.

Wall Knot (Fig. 9).—Unlay the end of the rope and whip (tie) it where shown, and form a bight of strand 1, and hold it down at the side represented by 2; pass the end of 3 around 1, and the end of 4 around 3 and through the bight of 1, then the knot will appear as shown in Fig. 10; now haul the parts taut and the knot will be formed.

KNOTS

Crowned Wall Knot (Fig. 11).—Over the top of the knot lay the strand 1, then lay strand 2 over 1, and strand 3 over 2, and pass it through the bight of 1; now haul taut the parts and the knot will take the shape shown in Fig. 12.

Double Wall and Double Crown Knot (Fig. 13).—This is made by allowing the strands to follow their respective parts round, first walling, then crowning, as shown in the diagram. This formation is also used as a Stopper Knot and a Man Rope Knot, although a proper Stopper Knot is shown in Fig. 14. It is a very beautiful knot when nicely made, and as a fancy knot is common on yachts and naval vessels.

Matthew Walker Knot (Fig. 15).—As its name implies, this knot is named after the man who invented it. It is exceedingly simple and easy to make, and is in common use on board of all vessels. Unlay the strands for a short distance, and pass the end 1 around the rope and through its own bight; next the strand 2 underneath and through the bight of 1, also its own bight; last the strand 3 underneath and through the bights of 1 and 2. When hauled taut the knot will appear as in Fig. 16.

Diamond Knot (Fig. 17).—Unlay the strands as for a Matthew Walker Knot, and form three bights and then take strand 1 over 2 and through the bight of 3; take strand 2 over 3 and through the bight of 1; take strand 3 over 1 and through the bight of 2, then haul the parts taut, and lay up (arrange) the strands of the rope again, and the knot will then appear as in Fig. 18. What is known as a Double Diamond Knot (Fig. 19) may be made by leading the strands through two single bights, having the ends come out at the top of the knot, then leading the last strand through two double bights; last lay the strands up as previously explained, and the knot will show as in Fig. 19.

Turk’s Head Knot (Fig. 20).—This is purely an ornamental knot, and is used to beautify yoke lines for a rowing boat, man ropes, ridge ropes, gangway ropes, etc. The material used in the construction of this knot is regulated according to the character of the article to be decorated, ranging from twine to signal halyard stuff (line). To make this knot, form a clove hitch, and bring the bight of 1 (Fig. 21) under the bight of 2, then take the end up through it, make another cross with the bights, and take the end down. Fig. 22 represents a Turk’s Head of two lays, but it may have any number of lays, it being necessary only to follow the lead around according to the formation desired.

Rope Yarn Knot (Fig. 23).—It is to be explained that a rope yarn is simply one of the several parts which make a strand of rope. When a strand is untwisted, its parts become rope yarns. These yarns are used for a number of purposes, such as for rough seizings, etc. When a considerable length of rope yarn is required, it is necessary to knot it smoothly, and this is effected in the following manner: Split in halves the two ends of the rope yarns, and crotch and tie the two opposite ends, then jam the tie and cut off the remaining ends.

Lark’s Head Knot (Fig. 24).—This knot is used on the same principle as explained for the Slippery Hitch; when it is desired to undo it quickly, simply pull out the wooden toggle 1. The making of the knot will be fully understood by consulting the diagram.

Ropes are temporarily fastened to one another, or to a spar, hook, ring-bolt, etc., by bends and by hitches. These are all more or less simple, and a little practice and patience is all that is necessary for the young reader to become expert in their manufacture. Let us first consider the bends in general use.

Bends

Common Bend (Fig. 25).—This is also known as a single bend, and is used for making one rope fast to another in a hurry. Make a bight with one rope, and hold it in the left hand; pass the end of the other rope 1 through the bight 2, then back round the two parts 3, over the rope 4, under the rope 5, and over the short end of the loop. If the end 1 is taken around once more and through the bight again, as shown in Fig. 26, the bend will stand a greater strain and be less liable to jam. The bend shown in Fig. 26 is known as a double bend.

Carrick Bend (Fig. 27).—This, like the common bend, is used for bending hawsers together, but is a trifle more difficult to make. Make a bight with the end of one rope; pass the end of the other rope through the bight and over the standing part of the first rope where marked 1, then under the end 2, and again through the bight and over the standing part 3.

Fisherman’s Bend (Fig. 28).—First pass the rope twice round the spar or ring, which act is understood by sailors as “taking two round turns,” next take a half hitch round the standing part, then thrust the end under the two turns, and last half hitch the end round the standing part A. When hauled taut the bend will appear as shown in Fig. 29.

Sheet Bend (Fig. 30).—Pass the end 1 through the eye; take two turns round, observing in each case that the end passes under the standing part 2. The greater the strain, the more the standing part binds the two turns, and insures them from slipping.

Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29, Fig. 30, Fig. 31, Fig. 32, Fig. 33

Hitches

Two Half Hitches (Fig. 31).—This is an exceedingly simple way of fastening a rope, and it has the double advantage of being proof against jamming. Take a turn around the object to which it is desired to fasten; bring the end 1 on top of the standing part 2, then pass it under and bring it up through the bight; repeat this process, haul taut, and the result will show as in Fig. 32. In case the hitch is to be subjected to a great strain, lash the end of the rope to the standing part where marked 3 in Fig. 32.

Clove Hitch (Fig. 33).—This is another very useful hitch, but is only employed when the strain upon it is temporary. It is in general use for bending a heaving-line (small rope) to a hawser so that a coil of the former may be thrown from a vessel to the dock and, after it is caught, the hawser pulled ashore.

Slippery Hitch (Fig. 34).—This hitch is simply a turn around a spar or other object or through an eye, the end carried across the standing part, and a loop put through the bight, the end 1 being allowed to hang out. When it is desired to separate the hitch, pull out the loop by hauling on the end 1.

Blackwall Hitch (Fig. 35).—This is used in hoisting. Simply take a turn around the back of the hook, crossing the parts of the rope in front as shown. When a strain is put on the standing part of the rope, the underneath part is jammed and slipping prevented.

Timber Hitch (Fig. 36).—A hitch employed in towing spars and logs, as it will not slip. Pass the end 1 of the rope around the spar and lead it up and around the standing part 2, then pass two or three turns with the end around its own part as shown in the illustration.

Rolling Hitch (Fig. 37).—A very good method of clapping (fastening) a tail-block. Take a hitch with the tail 1; take another hitch over the first; pass the end under the standing part 2, and twist the remainder of the tail round the rope, following the lay. A tail-block, being portable, is convenient to make fast anywhere about decks or the rigging, and a rope being rove through this block, a purchase, called a “whip,” is created.

Magnus Hitch (Fig. 38).—Some people confuse this hitch with the rolling hitch just described, but a comparison of the two will explain the difference between them. With the end of the rope 1 pass two turns over the spar; carry the end in front of the standing part 2; pass it again under the spar and bring it up through the bight. The value of this hitch is its insurance against slipping in the direction represented by the arrow.

Fig. 34, Fig. 35, Fig. 36, Fig. 37, Fig. 38, Fig. 39, Fig. 40, Fig. 41, Fig. 42, Fig. 43, Fig. 44

Catspaw Hitch (Fig. 39).—Like the Blackwall Hitch, this one is used for making a rope fast to a hook for hoisting purposes. Seize the bight of the rope in your two hands, and by turning the wrists form the two loops, then hang these loops on the hook as in Fig. 40.

Sheepshank Hitch (Fig. 41).—A quick way of shortening a rope without cutting it is to convert a portion of it into a shape known as a sheepshank. Gather up the spare rope and lay it in parallel lines as shown. These parallel lines may be represented by any number, according to the quantity of spare rope and the length of the sheepshank. In the accompanying diagrams we show the smallest sheepshank that can be made, consisting of three parallel lines. After forming the rope as shown in Fig. 41, take a half hitch with the standing part 1 round the bight 4, and repeat this at the other extremity with the standing part 2 and the bight 3. The result will be as shown in Fig. 42. If it is desired to make this hitch doubly secure, put a seizing (fastening) 7 on the loops 5 and standing parts 6 (Fig. 43).

Marling Hitch (Fig. 44).—Employed to make a running binding which can be put on and removed quickly.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page