Part I IN BOUNDS

Previous
OUT-DOOR BOOK FOR BOYS

Chapter I

BACK-YARD PLEASURES

Since home is the natural centre of life, it will be most helpful if we find out what we can do just outside the house. In large cities there is usually no front yard, and even where such space exists its use as a play-ground is apt to be undesirable. But the back yard even in cities often affords some chances not only for gardening on a small scale but also for making and using a variety of things which will furnish constant amusement.

A Wigwam

For boys who like to “play Injun” in the back yard, here are some ideas for tepees and wigwams that may easily be followed cut at a very small cost for the poles and canvas.

Canvas can be bought at a dry-goods or country store, and poles may be cut in the woods; or one-and-one-half-inch-square spruce sticks may be purchased at a lumber-yard and dressed round with a draw-knife and plane. When cutting poles for a wigwam it is necessary to select very straight ones, preferably of pine, for crooked or knotty poles are unsightly and make an uneven exterior.

The real Indian tepee is made from buckskin or other strong hides lashed together with rawhide thongs; but as this covering is beyond the reach of the average boy, the next best thing to use will be heavy twilled canvas or stout unbleached muslin that can be had for about ten cents a yard. The regulation wigwam is perhaps the most satisfactory kind of a tent, for it is roomy, will shed water, and it is about the only tent in which a fire may be built without smoking out the occupants. The tepee will not blow over if properly set up and stayed with an anchor-rope, and it is easily taken down and moved from place to place.

Fig. 1, Fig. 2, Fig. 3, Fig. 4

A WIGWAM

For a party of three or four boys the wigwam shown in Fig. 1 will afford ample room, and it is not so large as to be unhandy. Select thirteen straight poles, not more than two inches thick at the bottom, and clear them from knots and projecting twigs. They should be ten feet long and pointed at the bottom so as to stick into the ground for a few inches. Tie three of them together eighteen inches from the top, and form a tripod on a circle five feet and six inches in diameter. Place the other poles against this tripod to form a cone, as shown in Fig. 2, and lash them fast at the top with a piece of clothes-line. From unbleached muslin or sail-cloth (light weight) make a cover as shown in the diagram Fig. 3. Lay out a sixteen-foot circle on a barn floor, or the grass, with chalk, and indicate an eighteen-inch circle at the middle. Around the outer circle or periphery measure off nineteen feet and chalk-mark the space. From these marks to the centre of the circle draw straight lines, and within these limits the area of the wigwam cover will be shown. It should correspond with the plan drawing in Fig. 3. The muslin should be three feet wide and with it this area can be covered in any direction, sewing the strips together to make the large sheet; or the muslin may be cut in strips three feet wide at one end and tapering to a few inches at the other, as shown in Fig. 4, the seams running up and down the canvas instead of across it. The outer edge of the canvas cover should be bound with clothes-line or cotton rope, sewed securely with waxed white string; then thirteen short ropes should be passed over this rope so that the canvas may be lashed fast to the foot of each pole to hold the cover in place. The doorway flaps are formed by stopping the lacings three feet up from the ground. With short ropes and rings sewed to the cover the flaps may be tied back, as shown in Fig. 1.

The real Indian wigwams are decorated with all sorts of emblems, for even the uncivilized red men had their crests and totems, and the boys who make these tepees can easily invent some mark which will distinguish their tent abode from all others. The ornamentation should be done with paint and should be carried out before the canvas covering is stretched over the poles.

A Square Tepee

Fig. 5, Fig. 6

A square tepee, as shown in the illustration Fig. 5, is another form of rear-yard tent that is easily made. Twelve poles are selected and four of them are lashed fast and spread apart on a square of six feet. Two poles are added to each side and all are lashed together at the head. Four pieces of canvas or heavy unbleached muslin are cut and made on the plan as shown in Fig. 6, the strips being cut from goods a yard wide. These pieces are six feet long, one foot wide at the head, and six feet at the foot. The seam through the middle of one piece is left open for three feet to form the doorway flaps, then the four sides are securely sewed together with waxed white string. This cover is slipped about the pole frame, tied at the front, and held down by means of short ropes that are lashed fast to the foot of each pole. The cover is decorated with paint to give it the Indian appearance, and when the flaps are tied back it is easy to go into and come out of the tepee.

A Ridge-pole Tepee

A ridge-pole tepee is shown in Fig. 7, and is a very easy and simple one to make, for it is of one piece of canvas with two flaps sewed at each side to form the ends.

Fig. 7
Fig. 8

One ridge and two upright poles make the framework, and they are held in place by the canvas, which is drawn and lashed fast to stakes driven in the ground, as may be seen in the drawing. The ridge-pole is eight feet long, one and a half inches thick, and four inches wide. Two inches from either end a half-inch hole is bored to receive the iron pins that are driven in the ends of the uprights as shown at Fig. 8A and B. The upright poles are eight feet long, and when set one foot of the lower end should be embedded in the ground. The sides are in one piece of muslin made by sewing widths of it together. The sheet measures seventeen feet long and eight feet wide; and when stretched over the ridge-pole and fastened down at both sides an inverted shape will be the result. It is ten feet across at the bottom, seven feet high, and eight feet long at each side. For the back it will be necessary to make a triangular piece of canvas the right size to fit the opening, or two flaps may be cut, divided at the middle, and tied back, or laced, to close the tent. The apron or part enclosure at the front is formed from pieces of canvas two feet wide sewed along the edges and caught together at the middle over the opening.

Ten pegs eighteen inches long and two inches wide are cut from hard-wood as shown at Fig. 8C. These are driven in the ground at an angle and ropes attached to the lower edges of the canvas sidings are lashed fast to them. This tepee is long enough to swing a hammock from pole to pole, and on a warm summer night makes an ideal place for sleeping out-of-doors. The covering, like that of the other wigwams, may be decorated with Indian emblems, and if a party of boys are going to camp in the back yard their tepees can be inscribed with different crests and totems to indicate individual ownership.

A Fountain

A practicable rear-yard fountain may be made with a brick or concrete basin, an underground pipe-line and an overflow, thus insuring a continuous flow and discharge.

In Fig. 9 the basin, pipe, and trap are shown with the inlet pipe fitted for a hose connection. Three plates of different sizes are used for the traps, and if care is taken in drilling the holes an opening may be made in the bottom of each plate so that it will slip over the stand-pipe. Tin or enamelled iron plates will answer the purpose very well for a while, but the tin plates would soon rust unless frequently painted. The white earthern-ware plates will present the best appearance and will last indefinitely.

Dig a circular hole thirty inches across and twelve inches deep, and with cement and sand make a hard bottom or bed. Use a trowel and smooth the cement so that the top surface is smooth. With some bricks form a circle, as shown at Fig. 10. With a cold-chisel and mallet cut away the edges of two bricks so that the overflow pipe will pass between them, as shown at A in Fig. 10.

The pipe should be half or three-quarter inch galvanized water-pipe, and it may be purchased at a plumber’s shop for a few cents a foot.

The supply-pipe is three-eighths-inch galvanized water-pipe, and should be set in place under the concrete bottom of the basin before the cement is poured in. The upright, or stand-pipe, is thirty-six inches high from the elbow, B (Fig. 10), in the ground. The cross-pipe leading out is eighteen or twenty inches long, and the short upright that comes to the surface outside the basin is fifteen inches long and is to be provided with a hose connection so that a garden hose may be attached to it. The stand-pipe in the basin and the cross-piece should be embedded in the cement concrete, and when it is dry and hardens around the pipes it will hold them securely in place. When the circle of bricks is complete, fill in the crevices with equal parts of cement and sand mixed into a mortar. This will lock the bricks together; then plaster the cement all around the inside of the circle and some at the outside so as to make a water-tight basin.

Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13

Earth is to be put back into the hole outside the circle of bricks and the sod replaced, so that grass will grow right up to the edge of the basin rim, which should project an inch or two above the surface of the ground.

From a plumber or gas-fitter obtain some old pieces of brass tubing an inch in diameter, cut one of them fourteen inches long, and slip it down over the stand-pipe. The lowest and largest plate rests on this. Next cut a piece of tubing nine inches long and slip it over the pipe. The second plate rests on this and the top plate is supported by a piece of the tubing cut six inches in length and slipped over the pipe. If porcelain dishes are used, make the first hole in them as follows:

Obtain a stout, three-inch steel wire nail, a block of wood about three inches square, having an inch hole bored at one end, and a small hard-wood mallet. Place a plate on the block of wood, inverted so that its centre will be exactly over the hole. Place the point of the nail on the plate, taking care to get it in the centre; then give it a sharp, quick blow with the mallet. If this is properly done a small piece of the porcelain will be driven out, but remember that if the blow is not properly centred it will break the plate. For this reason it is best to practise first on a broken plate; or if the porcelain seems to be impossible, the painted tin or enamelled plates will have to answer. A perforated porcelain plate is shown in Fig. 11A. The ragged hole can be smoothed out or chafed away with an old rat-tail or half-round file. A brass reducer and a gas pillar should be screwed fast to the top of the stand-pipe so that a jet of water about a quarter of an inch in diameter will shoot above the pipe.

If a little wooden ball is to dance at the top of the jet, a half-circular basket will be necessary to catch the ball when it falls, so that the stream of water can pick it up again. This is made from brass or galvanized wire, and where the wires cross bind the joint with fine copper wire and solder the joints so as to make them rigid. A small brass ferrule or short piece of pipe should be soldered to the bottom of this basket, so as to hold it in place when slipped over the pillar or nozzle. This basket and its shape is more clearly shown in Fig. 11B. It should be six or eight inches in diameter and three inches deep, with the wires close enough together to prevent the ball from falling through.

If it is not possible to get the bricks of which to form the basin, a concrete wall can be made instead. Dig the hole as before described; then construct a cylinder of wood twenty-four inches in diameter and eight inches thick. Floor over the bottom of the hole with concrete, after the stand-pipe is in place, and around the edge of the concrete floor and outside the cylinder embed some small stones so that the filling will hold fast. This is shown at cc in Fig. 12. Slip the wooden cylinder over the stand-pipe so that it will occupy the position as shown in Fig. 12. Make a mixture of coarse sand or gravel and cement, half and half, and add a shovel or two of small stones, preferably cracked, such as are used for the under-dressing to macadam roads. Tamp this down in the opening in the ground so as to fill up the ditch or moat as shown at Fig. 13. The outside of the cylinder should be thoroughly coated with lard or some heavy grease before the concrete is poured in, so that the wood will not absorb the moisture from the concrete and cause it to bind in the hole. As a precaution it would be well to make the bottom of the cylinder an inch smaller in diameter than the top, so that it may draw out easily after the concrete has set. The two slots shown in the top of the cylinder are hand holes to grasp it by.

With nearly clear cement, having but a small portion of sand added, finish the inside of the basin and the rim with a trowel so as to give it a smooth and even surface. The force of water may be regulated with a faucet.

An Aquarium

Fig. 14, Fig. 15, Fig. 16

There is nothing difficult in the construction of a glass-and-wood aquarium like the one shown in Fig. 14, and the boy who is handy with tools and careful in joining wood-work accurately will be able to knock it together in short order. The best size will be twenty-four inches long, fifteen wide, and ten inches high. This will be generous enough in proportions to accommodate a dozen or so of small fish, some baby eels, crawfish, a turtle or two, and some water-lizards.

From a carpenter obtain a piece of white-wood twenty-seven inches long, seventeen inches wide, and one and a half inches in thickness. This must be of selected stock, hard and free from knots or sappy places. Cut four battens of hard-wood two inches wide, an inch thick, and fifteen inches long, and with brass screws attach them securely to the underside of the board to prevent its warping from the action of the water. Obtain a stick one inch and a half square and four feet long; cut this into lengths of eleven inches each and also prepare one eight feet long, two inches wide, and seven-eighths of an inch thick. With a groove-plane having a quarter-inch blade cut into the square stick on two sides as shown in Fig. 15A. The edge of the stick between the two grooves may then be planed off so that an end view of the stick will appear as shown at Fig. 15B. A groove should be cut at one side of the long stick three-eighths of an inch from one edge so that when turned groove side down an end will appear as shown at C in Fig. 15. This stick is to be cut in lengths fifteen and twenty-four inches respectively for top rails.

In the four corners of the white-wood board cut a hole with bit and chisel three-quarters of an inch square as shown at Fig. 16. Saw the bottom of each square stick so as to cut away about a quarter of an inch of wood on each side as shown at the lower part of A in Fig. 15. This is made so that the uprights will fit snugly into the holes and the shoulder formed by the saw-cuts will rest on the top of the base board.

With straight rule and pencil mark parallel lines connecting each hole as shown at DD in Fig. 16. These lines should correspond in position with the grooves cut in the posts; then remove the posts and with grooving-plane or chisel and mallet cut the grooves about three-eighths of an inch in depth. The glass sides fit into these grooves, and the top rails made from the long stick cap the upper edges of the glass sides. The ends should be lapped and screwed down to the top of the corner-posts to bind the glass and wood-work in one compact framework.

Before any of the wood-work is put together give it three successive thin coats of black asphaltum varnish, which can be purchased at a paint or hardware store. Each hole and the plug ends of the corner-posts are to be coated with thick asphaltum varnish, and when wet with the varnish the posts are to be driven into the holes. Screws passed in through the sides of the base board will hold them securely in place.

From a glazier or hardware store purchase two panes of double-thick glass ten by fourteen inches, and two measuring ten by twenty-two inches. Give the grooves a thick coat of the asphaltum varnish, slide the glass down into the grooves, and screw the top rails in place. When the glass is in place and before the top rails are put on, the glass should stand a quarter of an inch above the top of the corner-posts. When the rails are laid in place the top edge of the glass should be caught by the groove in the rails, otherwise the glass, having no support at the top, would bow out on account of the pressure of water, and either cause the glass to break or the joints to leak. Press the glass sides against the outer edges of the grooves and lightly insert some wooden wedges into the grooves to hold the glass in place temporarily for a day or two or until the varnish sets. Then fill the open spaces in the grooves with a putty made from whiting and asphaltum varnish. This you will have to make yourself with a putty-knife on a plate of glass, marble, or slate, for you cannot purchase it. Common putty is not hard enough and will not dry for months, while the special putty will set quickly and dry hard in a few days. When all the work is completed about the aquarium allow it to stand for at least a week, in which time the putty and varnish will harden.

At a paint store purchase some marine paint, also known as “copper paint,” and give the wood-work two or three thin successive coats, allowing it to dry for a few days between each coat. Scrape the paint from the glass where it may have been smeared, and the complete aquarium is ready for water and stock.

Another way in which to construct the framework is to take a curtain-pole one and a half inches in diameter, and at a planing-mill have a quarter section sawed out, as shown at Fig. 17, so that an end rim will appear as shown at B. The part of the wood-work the buzz-saw cuts away will correspond with the grooves cut in the square sticks.

Fig. 17, Fig. 18, Fig. 19, Fig. 20, Fig. 21, Fig. 22

Four holes one and a half inches in diameter, or the same size as the stick, are bored half-way-through the bottom-board of the aquarium and V-shaped channels are cut in the board connecting the holes (Fig. 18). The wood-work is treated in a manner similar to that already described, and the corner-posts are held in place by long brass screws driven up through the bottom and into the lower ends of the posts. The top rail is made the same as shown in Fig. 15C, and the glass is set as described. At the corner-posts the lap is well smeared with asphaltum varnish and putty and the angle strips are screwed fast to the posts as indicated at A in Fig. 17. While this is somewhat easier to make it is not quite so substantial for large tanks as the square post and channels.

When catching the stock for the aquarium it is best to use a drop-net. This is made of two iron hoops fifteen or twenty inches in diameter and held one below the other with cord as shown at Fig. 19. Mosquito-netting is drawn across the lower hoop and sewed fast; then a band of it is sewed about both hoops to close in the sides, to form a cylinder open at the top only. Some bait is placed in the bottom of the net, and then it is lowered into the water so that the top hoop drops down and the whole net lies flat on the bottom of a pond. When a number of fish are around the bait a quick haul will raise the upper ring; then pull the net up with the fish captives within the cylinder. You can quickly select the ones you want, and these may be placed in a pail partly filled with water.

For turtles, crawfish, and lizards a scap-net will be necessary. This may be made from stout wire, a broom-handle, and some netting. The ring may be almost any size, from six to twelve inches in diameter, the ends being sharpened with a file and turned so that they may be driven into the end of the stick, which should first be bound with wire to prevent it from splitting. The bag of mosquito-netting is made on the hoop and sewed fast, as shown at Fig. 20. When changing the water in the aquarium it is not necessary to empty it all out. A siphon made of a small rubber tube will answer very well to drain off a portion. The part of the tube in the tank should be held close to the bottom so as to suck up any dirt or sediment that may be there. Good ventilation, light, healthy aquatic plants, clean sand, and a proper proportion of fish to the volume of water are absolutely necessary to the successful aquarium. A few tadpoles and snails are advantageous in an aquarium, as they consume decaying vegetable matter and help to prevent the formation of algÆ on the glass.

For the aquarium large enough to contain them, some artificial rockeries may be made from cement, gravel, and stones, as shown in the illustrations of the concrete rockeries Figs. 21 and 22. They should be made with openings beneath for the fish to swim through, and pockets should be made at the top to hold sand and the roots of aquatic plants. The rockeries should have a good flat base so as to rest securely on the bottom of the aquarium. Always have plenty of pebbles and river-sand at the bottom of the aquarium to make the fishes feel at home.

How to Manage an Aquarium

It is generally supposed that it is necessary to change the water in an aquarium at least once a day; but that is not the case. The true principle on which an aquarium should be conducted is not to change the water at all, but so to aËrate and refresh the original supply as to maintain it always in a pure and perfect state. There are several means by which this may be done. The healthy growth of plants is very important, and active and brisk contact with the air of the atmosphere will greatly freshen the water. Motion in the water is absolutely necessary. In large aquaria this is obtained by an arrangement of tanks into which the water is pumped, and from which it flows rapidly, circulating through the tanks where the fish live. In its passage through the air it absorbs considerable oxygen, without which no fish can live. Fish placed in water that has been boiled die in a very few minutes.

The first thing to be done in the formation of a fresh-water aquarium is to start your plants in proper soil at the bottom of your tank, fill the tank with water, and leave it undisturbed until the plants begin to grow and the little bubbles of oxygen are to be seen rising to the surface of the water.

Choose your plants from such as you may collect from rivers or brooks or ponds anywhere in the country. Plant them, and then cover the surface of the soil with pebbles and small bits of rock, or anything that is suitable and in keeping with the rest of your arrangements. Never put sea-shells into a fresh-water aquarium.

Now fill your tank with water poured through a siphon or funnel, being very careful not to disturb the soil or the roots of the plants. You should have some clean river-sand in the bottom of your tank, and your pieces of rock should be so arranged as to form little caves and hiding-places for your fish. It will take perhaps two weeks to get your tank into a proper condition for fish to live in. Every bit of dead or decaying vegetation should be carefully removed. Keep your tank shaded from the heat of the sun, and expose it to the bright light only once in a while.

In order to manage your aquarium properly you will require a few simple tools. A little hand-net that can be bought for a few cents, or made for even less out of a bit of wire and a small piece of mosquito-netting, is useful for catching the fish or shells without putting your hands into the water. A pair of wooden forceps, like a glove-stretcher, will be found most convenient for nipping off bits of decaying plants or for catching objects that may have accidentally fallen into the water. Glass tubes of various sizes are also useful. If you want to catch any small object in the water with the tube, place the tube in the water with your finger over the hole in the top. Until your finger is removed the tube will remain full of air. Place it over the bit of refuse or whatever it is you want to catch, remove your finger, and the water will rush in, carrying the object with it into the tube, which should then be closed at the upper end by placing your finger over it as before. A glass or hard-rubber syringe is necessary with which to aËrate the water thoroughly at least once a day, and oftener if possible. Fill the syringe, hold it high above the tank, and then squirt the water back again.

If a green film begins to gather on the side of the tank that is most exposed to the light, it should be cleaned away every day, and the sides of the glass polished carefully. A small piece of clean sponge tied on the end of a stick will answer the purpose very well, and, if used daily, you can keep the glass clear with very little trouble; but if the scum is neglected and left to accumulate, you will find it almost impossible to remove it from the glass even by hard scouring.

It is best to have only small fish in your aquarium, and for this reason trout are not desirable. Although very beautiful and intelligent, they grow so rapidly that they are likely to become in a short time too unwieldy for your tank. Goldfish and minnows are very good, and the common little sunfish or “pumpkin-seed” is excellent.

You must keep careful watch over the fish in your aquarium, and if any one of them appears to be sick he should be removed at once, very gently, with the hand-net, and placed in fresh water, where he will often recover. If, however, the little sufferer is doomed to die, it is better not to run the risk of his doing so among his healthy companions. It is best always to have a hospital for your sickly pets, and as soon as one of them, whether a fish or a bird or any animal, shows signs of ill health, he should be taken away from the others and placed by himself.

Certain varieties of snails live well in fresh water, and will be found useful in clearing away the green film that is almost certain to collect on the side of the glass; but you must be careful or they will devour your plants as well; and if your tank is very small it is hardly worth while to try to keep them.

Water-beetles and water-spiders also thrive well, and their habits are most interesting to watch; but water-beetles fly by night, and unless you are careful to cover your tank you are likely to discover some morning that a number of your tenants have taken French leave.

You must be careful not to overstock your aquarium, for your fish will not thrive if they are overcrowded. Remember, also, that heat and dust are fatal to your pets. The water must be kept clean and cool at all times, and all foreign matter and every particle of decaying vegetation should be removed immediately.

To manage an aquarium successfully, no matter on how small a scale, requires a good deal of care and time, but you will find it time well spent, and the pleasure and knowledge the study of your pets will give you will be an ample return for the time you spend on them.

A Merry-go-round

A great deal of fun may be had with a merry-go-round in the rear yard, and while it may not be run by an engine or its motion accompanied by an organ, hand power will turn the table and music can be made with an old accordion or concertina. The only difficult thing about the whole affair is the bevelled gear, the shaft and crank; but if an old reaper can be found at a blacksmith-shop the difficulty is solved, for a pair of bevelled gears are on every reaping-machine. Of course a machine-shop or foundry would contain gearing of various sizes, and a five and twelve inch gear wheel will answer the purpose very well.

In the practical back-yard merry-go-round shown in Fig. 23 the revolving post is four inches square and may be of spruce or white-wood planed on all sides and provided with a ferrule at both ends. These may be taken from old buggy-wheels, and will prevent the wood from splitting when the pins are driven in. The lower cross-beams aa in Fig. 24 are of spruce, eight feet long and two by three inches. The beams bb are six feet and six inches long, and on these four the cross-plates are made fast that hold the top or deck planks. The six cross-timbers are of spruce, one by four inches, and are from two to eight feet in length, according to their location. The beam plan (Fig. 24) shows quite clearly how these supporting beams are arranged. They are held together with steel wire-nails driven down from the upper beams diagonally into the lower ones.

Fig. 24, Fig. 25, Fig. 26, Fig. 27, Fig. 28

A MERRY-GO-ROUND

The longest beams are securely spiked to the revolving shaft, and in securing them in place take care to see that they are perfectly true, so that the outer edge of the platform will not dip and rise as it revolves. Drive a three-quarter-inch rod in the top of the shaft and another one in the bottom having a bevelled point as shown at Fig. 25. At the lower end of the shaft arrange the larger gear wheel and pin it fast so that it is fixed to the shaft and will not move.

An iron base-plate with an upright arm welded to it will hold the shaft and the smaller gear, which is to be arranged the right height to lock in with the teeth of the large gear. This plate is shown in Fig. 26; and through the four holes at the corners long screws are passed to bolt the plate securely to a wooden base, which last is set in the ground as shown at A in Fig. 27. The shaft B, to the end of which the small gear wheel is made fast, extends out beyond one of the upright posts, and at the outer end a crank and handle C are made fast, so that by hand-power the platform and shaft may be revolved.

Construct an overhead framework of six by two inch spruce beams twelve feet long, and set them in the ground twelve feet apart, bracing the uprights well, braced at both sides with angle beams as shown in Fig. 23. The top bar should be well braced also with one or two angle brackets, to prevent the frame from rocking. If the ground props are not strong enough to properly brace the frame, attach heavy wires to the corners and carry them out in both directions, making the ends fast to stout pieces of joist embedded in the ground.

At the middle of the top cross-bar arrange a plate of wood eighteen inches long with a groove cut in it in which the pin at the top of the square shaft may revolve. This plate should be attached to the bar with lag screws, so that it can be removed when it is necessary to unstep the shaft and platform. The outer line of deck planking is shown in the deck plan (Fig. 28), and inside of these boards as many others can be laid down as desired; or the entire frame may be all decked over, leaving a small space near the middle so as to reach the gear and lower pin in order to grease them. Where the shaft passes one of the uprights of the supporting frame an iron strap will hold it in place against the wood, and this bearing will require lubrication from time to time.

Four stout wire guys must be drawn from the top of the shaft and fastened at the outer edge of the platform to one of the beam ends. The anchorage should be made with very stout, strong screw-eyes, and to make it easier to draw the wires taut four small turn-buckles should be purchased at a hardware store and made fast to the lower ends of the wires, the hook on the buckle being caught in the large screw-eyes.

Seats may be made from boxes and nailed to the deck, and as a safeguard to prevent falling from the turn-table ropes should be attached to the stanchion wires and to the shaft as shown in Fig. 23.

It would be well to paint all the wood-work in order to give it a good appearance, and all the iron parts should be coated with asphaltum varnish to prevent rusting.

If the gears are properly adjusted and there is no friction at the bearings, it will not be a difficult matter to move the table with several children occupying the seats. The bevelled point bearing at the bottom rests in a drilled depression in the plate, and the friction there is reduced to a minimum, while at the top the friction will be slight if the weight is properly distributed on the turn-table.

Chapter II

PET SHELTERS

Most boys are interested in pet animals, and at one time or another possess them. Cats and dogs are domesticated and will always stay about the house if they are properly cared for and treated kindly, but rabbits, guinea-pigs, squirrels, monkeys, and reptiles often forget where they belong and will wander away and neglect to come back.

For this reason it will be necessary to build houses and hutches for them, and so safeguard the doorways and screenings that they cannot escape.

It is not possible, of course, to give a lengthy description of pet shelters, since there are so many different kinds in use by boys all over the world; but the illustrations on these pages will give some ideas for the American and English boys to follow in making houses, hutches, and retreats to shelter their pet animals, birds, and reptiles.

In speaking of reptiles, that does not necessarily mean snakes, for under this classification come the horned-toads, lizards, turtles, and many of the beautiful tropical creeping and crawling things that in warm countries take the place of the white mice, rabbits, guinea-pigs, and canary-birds of our northern climes.

Some boys have a natural aptitude for carpenter-work, but there may be ideas in these illustrations and the accompanying descriptions that will be helpful both to them, and to the boy who has as yet to make his first kennel or pigeon-cote.

Martin Boxes

In the early spring, when the birds return to the north, the martins are among the first to appear, and long before the swallows, whom they closely resemble, begin to nest they have hatched their young and have taken their departure from the southland.

They are cold-weather birds, fly rapidly, and do not stay long in one place. They seldom build their nests in the branches of trees, but prefer to find a hole in a tree-trunk, and there build a nest safe from the wind and storm. The sand-martin burrows a hole in the side of a bank, but never builds a nest in the chimneys as do his brother and sister swallows. The martin, when sitting on her eggs, likes a dark and sheltered place, and for that reason she takes kindly to a martin box in which a hole is made sufficiently large for her to fly in and out of.

In Fig. 1 a small keg is supported at the top of a post and braced at the bottom with two bracket pieces. A hole two inches and a half in diameter is made at each end of the keg, through which the martins can enter, and the post to which the keg is fastened is cut away at the upper end as shown in Fig. 2.

In one side of the bilge of the keg a hole is cut as large as the post is square or round, and at the other side a corresponding hole is cut the size of the upper part of the post. The keg is then dropped down over the post so that the shoulder, formed by cutting away the wood, will rest under the upper side of the keg, in which the smaller square hole has been cut.

If a round post is employed, the upper part should be cut square so as to prevent the wind from blowing the keg round the post. A cross-stick fastened at the top of the post will form a perch on which the birds may alight.

A box with a peaked roof and three divisions, intended to accommodate three families of the birds, is shown in Fig. 3.

Fig. 1, Fig. 2, Fig. 3

An ordinary box may be cut and rearranged with a pitched roof, an inner floor, and the three divisions. A small hole is bored at each side of the box and a round stick passed through it, so that six or eight inches of the wood will project at either side to serve as perches. Another perch can be arranged at the top of the box, and this bird-house is then securely fastened to the upper end of a post and braced there with bracket-pieces nailed both to the bottom of the box and to the post.

The divisions in the box should be not less than six inches square and six or eight inches high. If the box used be square it will probably be an easier job to divide it into four divisions for as many families. Each compartment, of course, must be provided with its separate hole for ingress and egress.

Bird Shelters

Birds do not always seek the shelter of trees in a storm; they will often gather about the house and under barn eaves and piazza sheds, where they are protected from the rain and the drippings from wet leaves. They like a dry shelter, and structures suitable for their needs can be knocked together from very simple material. In the illustration of a bird shelter (Fig. 4), a canvas or heavy muslin roof is supported on two uprights, and under it five perches are arranged from side to side, upon which a great many birds can rest.

The uprights are one and a half by three inches, and the strips forming the Y braces are two inches wide and seven-eighths of an inch thick.

The perches are three-quarter-inch dowels three feet long. If they cannot be had at a carpenter’s shop or a hardware store, some small scantling may be planed nearly round to answer the same purpose. Where the perches are attached to the uprights and Y pieces, holes are bored half-way through the wood. Into these the ends of the perches are driven and nailed fast.

In Fig. 5 the canvas is left off from one side so that the constructional parts of the upright, braces, and roof strips may be seen. When the wood-work is put together the roof should be covered with canvas, heavy unbleached muslin, or a piece of oil-cloth, and tacked all around the edges.

Fig. 4, Fig. 5, Fig. 6

To make the barrel-hoop shelter, shown in Fig. 6, a flat barrel-hoop is loosely covered with canvas or muslin tacked all around the edge. In the top of a post a wooden peg is driven, and over this the middle of the canvas disk is slipped, having first made a hole in the fabric through which the peg can pass. Four wires are attached to the hoop at equal distances apart, and the lower ends caught through staples or screw-eyes driven in the post a foot or two from the top. Two or three holes should be made through the post in which round perches may be driven.

A shelter for the side of a house or barn can be made from a piece of board, two bracket strips, and three dowels or round sticks to act as perches.

The board should be three feet long and fifteen inches wide. Where it is attached to the house or barn a strip is first attached, and the inner edge of the board is then nailed fast to the strip. The two bracket strips that support the roof at the outer edge should be twenty-four inches long, one inch thick, and two inches wide. Three or four sets of holes are bored in the strips to receive the ends of the dowels or perches.

Pigeon-cotes

For the ordinary pigeons that fly about the house and barn some open cotes are shown in Fig. 7 and Fig. 8, but for the more valuable pigeons a large wire enclosure should be made and the lodges placed within them, unless the birds are very tame and will not leave the premises.

In Fig. 7A, a cote with three holes is shown that is easily made from thin boards. It should measure thirty inches long, nine inches wide, and twelve inches high at the back, while at the front the board with the holes cut in it should be nine inches wide, with the holes five inches high and four inches wide.

Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11

The wood is put together as shown in Fig. 9, and the roof boards overhang the ends and front for an inch or two. The upper ends of the two divisions need not extend beyond the height of the front board, and this open space will insure good ventilation. Sticks an inch square are made fast under the ends of the cote, and on the projecting ends a ledge three inches wide is fastened upon which the pigeons may alight.

The cote shown in Fig. 7B is made from a shoe-case divided as shown in Fig. 10; on each floor the entrances are alternated from front to sides. Outside each entrance a ledge three inches wide is supported on brackets, and under the pitched roof the ninth compartment is arranged.

The large pigeon-cote (Fig. 8) is a more pretentious affair to make and will tax the young carpenter’s skill. This cote can be made a very attractive pigeon shelter if it is carefully put together and nicely painted.

It is thirty-two inches long, twenty-four high to the eaves or thirty-four to the peak, and twelve inches deep. It is divided as shown in Fig. 11, and the ledges are supported with brackets cut from half-inch wood with a compass saw. From the eaves to the peak the front of the cote may be shingled, and above the peak a perch is erected.

This cote may be attached to the side of a barn or supported on stout uprights embedded securely in the ground.

Dog-kennels

When building a dog-kennel the important features to bear in mind are to make it strong, weather-proof, and large enough for a good-sized dog to turn around in comfortably. A poorly built kennel soon falls apart, and if it is not weather-proof rain will get in on the dog, and dogs do not like to get wet while sleeping any more than boys. Moreover, if the kennel is not large enough it is cramped and stuffy, and, while the dog cannot say so, he resents it, and in his own dog way of reasoning feels that he is imposed upon in being housed in such small quarters. The dimensions of a kennel must be naturally governed by the size of the dog who is to inhabit it; but for one of medium size, such as a setter or collie, a kennel with a peaked roof, similar to the one shown in Fig. 12, should be three feet long, two feet wide, two feet high at the sides, and three feet high from the ground to the peak or ridge-pole.

The floor frame is the first thing in constructing a kennel, and it should be made of two by three inch spruce, thirty-four inches long and twenty-two inches wide, with lap joints at the corners as shown in Fig. 13. On this the flooring of tongue and grooved boards is laid and nailed down.

From three matched boards eight inches wide make the front and back to the kennel as shown in Fig. 14. The lower ends of the boards are nailed to the floor frame, and where they are sawed off to form the peak a batten is placed at the inside and made fast with clinch nails driven into it from the outside through the boards.

The nail heads in the front of Fig. 14 will show the location of one batten, and the other can clearly be seen at the inside of the back, where the clinched nail ends are shown.

Beginning at the bottom and working up, the sides are laid on. Always place the tongue up and the groove down when using matched boards in a horizontal position, as otherwise the rain and moisture will work into the groove and cause the wood to decay.

A ridge-pole is nailed between the front and back at the peak, and to this the upper ends of the roof boards are fastened.

In the front a hole large enough for a dog to pass through is cut with a compass saw, and above it, near the peak, one large and three smaller holes are bored, as shown in Fig. 14, and the wood cut away between the holes, as shown in Fig. 12. This is for ventilation, for dogs as well as human beings require plenty of fresh air. Another hole at the top of the back board will allow free circulation of air across the top of the kennel.

Two or three good coats of paint will finish the wood-work, and with the addition of a chain fastened to a staple-plate this dog-kennel will be ready for occupancy.

This dog-hut in Fig 15 is built against the side of a house or barn, and is forty inches long, twenty-four wide, and twenty-eight inches high at the outer side, and thirty-six inches high next the house or barn. The floor frame is thirty-eight inches long, twenty-two inches wide, and made like Fig. 13. Stakes are driven in the ground, one under each corner, and to these the floor frame is spiked fast.

When constructed against a building a strip is fastened to the siding of the building on which to nail the roof boards and to the upper edges of the front, back, and side boards battens are made fast to strengthen the hut.

The wall or side of the building may, in such a “lean-to,” be used as a fourth side of the dog-hut. A ventilator is cut in the upper corner of the back and at the front a swinging door can be hung in the doorway or opening. This is a weather-door and is made an inch narrower on each side than the width of the doorway. It is hung on screw-eyes and staples so that it will act as a flap and can be pushed in or out by the dog when entering or leaving the hut. In the winter-time, and when it is raining, this door will keep out snow and water and also protect a dog from strong winds.

Guinea-pig Houses

When making houses or huts for guinea-pigs it will be necessary to make at least one-third of the coop dark, or nearly so, as the little pigs like darkened places in which to spend a portion of their time.

The illustration of the guinea-pig house in Fig. 16 shows how this can be done by partitioning off a portion of the house and making ventilating holes or small windows near the top.

Fig. 16, Fig. 17

A substantial double-decked house, similar to the one shown in the illustration, should be thirty-six inches long, twenty-four inches wide, twenty-four inches high to the roof eaves and thirty-two inches to the peak. A small dry-goods case can be adapted to this use, and the floor nailed in midway between the top and bottom.

The darkened compartment is fourteen inches wide and extends up on both floors. Holes three by four inches made in the sidings will permit the pigs to have access to the open and closed compartments. A door at one side is made high enough to open into both upper and lower compartments; this is swung on hinges, and for safety it may be provided with a hasp and padlock.

The open compartments are to be screened with square-mesh galvanized wire cloth substantially heavy to prevent the pigs escaping or dogs from entering and molesting them. This wire cloth can be purchased at a hardware store and attached to the wood with galvanized wire staples.

A guinea-pig house should not be placed on the ground, but attached to the tops of posts from twenty-four to thirty-six inches above the ground. Locust posts about four inches in diameter are the best for this purpose as they are tough and will not decay in the ground as quickly as other wood.

The guinea-pig hut shown in Fig. 17 has but one floor and it is much longer than the house, the floor plan being forty-two inches long and eighteen inches wide. The ends are fifteen inches high at the front, twelve at the back, and eighteen at the peak. The dark compartment is fifteen inches wide and the door at the front is six by eight inches, hung on hinges and fastened with a hasp and padlock.

At the front the roof extends over for six inches to shade the open compartment, and at both ends and the back it overhangs about two inches.

This hut is held up on sticks implanted in the ground, and braced so that the wind will not blow it over.

Chicken-coops

In the spring-time when little chickens are hatched, and it is not possible to let the hen wander about at random to scratch up the garden or the flower beds, some small coops and shelters should be constructed and placed in a corner of the back yard, or in some other vacant space, where the little chicks can run without being molested by the larger fowls, as they would be if put in the big chicken-coop or runway.

Fig. 18, Fig. 19

The easiest coop to make is shown in the illustration of the young chicken shelter (Fig. 18). It consists of a pitched roof mounted on three boards six inches high. This shelter may be three feet wide and two feet deep, and from the ground to the peak the distance is twenty-four inches. Slats are nailed across the front to prevent the hen from getting out, although not so close as to prevent the chicks from squeezing through. A coat or two of paint will improve the appearance of this shelter, and each mother-hen should be provided with a separate coop for her family.

In the illustration of the young chicken coop (Fig. 19) a little more care is taken with the construction, and a canopy fly is arranged at the front to keep off rain and to shade the interior of the coop. This coop is three feet long, two feet wide, and thirty inches high at the front, but at the back it need not be more than twenty-four inches high.

It may be constructed from boards with matched edges, or perhaps from a dry-goods case, and if it is raised from the ground an inch or two, and a few holes bored in the bottom, it will insure a dry floor. The cross rail at the bottom to which the upright slats are nailed is three inches above the floor; and if made two inches wide and the slats one inch and a half in width, they will be heavy enough to resist dogs and cats, if they should try to disturb mother-hen and her brood.

Outriggers may be nailed at each end so that about fifteen inches of the wood projects beyond the sides. A strip of lath should be fastened between the ends, and light canvas or muslin may then be tacked fast to the roof and to the strip to serve as an awning.

Rabbit-hutches

Among animal pets rabbits seem to be general favorites all over the country, perhaps because they are such beautiful and harmless little creatures and so prettily marked. They are worthy of a comfortable home, and the boy who is fortunate enough to have some good rabbits should take pleasure in building a substantial hutch in which they can live and thrive.

In Fig. 20 a double-floored rabbit-hutch is shown, and if it is made large enough quite a family of rabbits can live in it, the larger ones down-stairs and the smaller ones upstairs. An inclined plane will make it possible for the friends and relatives to visit each other.

This hutch should be from four to five feet long, twenty-four inches wide, and twenty-four inches high. The second floor is arranged so that it will be midway between the top and bottom, and at the rear an opening five inches wide and ten inches long will receive an inclined board, across which short sticks have been nailed to prevent the rabbits slipping when going up or coming down the stairs.

Fig. 20, Fig. 21

At one end a compartment is made eighteen inches wide, and provided with a door six inches wide hung on hinges and fastened with a hasp and lock. Openings five inches wide and six inches high are cut in the side of this compartment, so that the rabbits may enter it from either floor. A drop front, on hinges, will permit the hutch to be partially closed in very severe weather, but when it is pleasant the front should be raised and propped up with a stick, in the ends of which hooks are arranged that will fit into screw-eyes driven into the lid and along the side of the compartment, as shown in the illustration.

In the end of the hutch, opposite the bottom of the stairway, a feeding-doorway six inches square should be cut with a compass saw, and a door hung on hinges. This hutch should be supported on stout sticks or posts embedded in the ground for at least two feet, and it should be thirty to forty inches above the ground. Across the open runs, galvanized wire cloth, with half to three-quarter inch meshes, is to be nailed fast with staples. With a few coats of paint on the outside, this hutch will present a very good appearance.

The rabbit-house (Fig. 21) is a large, one-story structure, in which a family of rabbits can live very comfortably. It is thirty-six inches long, twenty-four inches wide, eighteen inches high at the back and twenty-two at the front. At one side a compartment is made twelve inches wide, and at the outer side a door seven by nine inches is hung and fastened with a lock. This house is supported on four posts, two or three feet above the ground, and when painted it should look very homelike to a rabbit’s eyes.

A house of this same description, but larger, may be made for a monkey, a fox, an opossum, a raccoon, or even for bear cubs. For the latter, bars will have to be used instead of the wire cloth, for the bears would soon tear away the lighter material.

Squirrel Cages

For squirrels, chipmunks, and white rats very good cages can be made from wire cloth, tin boxes, and wood, and in the illustration of a squirrel cage (Fig. 22) a simple house is shown.

To make it, a base-board is cut twenty-eight inches long, fifteen inches wide, and one inch and a quarter thick. Ten inches from one end the edges of the board are sawed off so that the end will be six inches wide. Eleven inches from the small end a square piece of wood is mounted on the base-board to form the back to the square compartment. This is covered with tin on the inside, so that the rodents cannot gnaw the wood away at the edges or about the hole that leads into the cylinder.

A wedge-shaped piece of wood, six inches broad at the bottom and two inches at the top, is attached to the small end of the base-board, and from the top of this piece to the top of the back-board a connection strip is nailed fast. From thick wire or quarter-inch iron rod a wicket is made and driven into holes at the wide end of the board. It should be the same size as the back-board, and is placed there to support the wire cloth of which the cage is made.

Fig. 22, Fig. 23

Small holes are made in the base-board with an awl, so that the ends of the wire cloth will slip into them. When the edges of the cloth are tacked to the back-board and wired to the wicket, the ends in the holes will remain in place.

A wire door made from the cloth can be hung on hinges, which should be soldered to the galvanized cloth. With straight wires or wire cloth an exercising cylinder can be made with wooden or tin ends. It is supported between the back of the cage and the wedge-shaped upright. Tacks driven around the hole that leads into the cylinder will prevent the occupants from gnawing away the edges of the wood-work.

The squirrel house (Fig. 23) is constructed in the same manner as the cage, but it has the advantage of a covered shelter at one end of the base-board. This is made from a tin cracker-box with the lid removed, and inverted so the bottom acts as the roof. In one side an oval opening is cut and a wire screen is fastened to it at the inside.

The wire cylinder is seven inches in diameter and twelve inches long, quite large enough for two squirrels to run a great race at the same time. A piece of hair felt, an old woollen cloth, or some curled hair will be comfortable for the squirrels to lie on in the enclosed cage.

Reptile Pens

In some parts of the country pets are made of reptiles, and very interesting and tame ones are found among the lizard family.

When making a reptile pen, care should be taken to get the joints tight and not have any small openings or cracks between boards, for snakes can get through a very small space, often much smaller than you would think it possible, judging from the size of their bodies.

In Fig. 24, the design for a very substantial reptile pen is shown, and instead of fine wire screening, two heavy plates of glass may be used at the front of each compartment. This is a double pen, and one side can be used for snakes, while the other may harbor some lizards or small land-turtles.

This pen is forty-eight inches long, twenty-four deep, and twenty-six high. The bottom rail at the front is four inches wide, and the top and upright ones are two inches wide.

Fig. 24, Fig. 25

The wood from which the pen is made should be tongue-and-grooved, and planed on both sides. It may be from three-quarters to one inch and a quarter thick, and narrow boards are preferable to wide ones.

In the lizard compartment an upper floor is fastened in, having an opening at one side where an inclined board, with cross sticks attached, is arranged so that the animals may climb up and down.

The snake pen should have a portion of a small tree fastened at top and bottom, on which the reptiles may climb and coil. The more short branches it has, the better, for it will then give the snakes a more satisfactory perch to move about on. At the bottom of each end a small trap doorway four inches high and six inches long is cut, and protected by a stout wire-cloth door, hinged and locked. These trap-doors are for the purpose of removing refuse or for feeding the reptiles; or a smaller opening at the back, near the top, and about two inches in diameter, can be used as a food door.

A ventilator is cut in the roof twelve inches long and six inches wide, so that each compartment gets the advantage of an opening about six inches square. Over this a roof is made three inches above the main roof, and with stout wire cloth the opening is covered first at the under side. Then the strip of wire cloth, four inches wide, is tacked around the inside of the opening and to a board the same size as the hole, or six by twelve inches, attached to the under side of the cap.

This arrangement is more clearly shown in Fig. 25, which is a sectional view, A being the cap, B the board to which the upper edge of the wire cloth is attached, C the wire cloth, and D the main roof to the pen. The line E represents the wire cloth tacked to the under side of the opening, to prevent the reptiles crawling up and over the partition.

At the lower end of the partition an opening four inches square may be made and fitted with a wire-netting door that can be raised and lowered by a rod that extends through the cap of the ventilator. One or two staples driven over the rod at the inside of the reptile pen will prevent the rod from bending, and the wire door should slide on runners provided with a rabbet at the inside, so that it cannot be dislodged.

With this construction, the reptiles may be allowed to mingle if they are peaceable, but if the snakes molest the small lizards they must be driven into their own side and the trap-door closed. With the outer doors at the bottom and the ventilator at the top, a free circulation of air can be had; and if the floor is kept well sanded and clean, this reptile pen will make a comfortable home for a collection of such pets.

Fig. 26

The lizard run shown in Fig. 26 is made from a wooden shoe-case open at the front, and on top of which a smaller box is mounted and connected with the lower one by means of an inclined board and an opening, through which the lizards can crawl. A ventilator is cut in the upper box and covered with wire netting; and in the lower box, at one end, a doorway is made, four by six inches, and protected by a heavy wire screen door on hinges.

A raised platform and ladder is made at one end of the large box, and in the open space one or two branches should be made fast on which the lizards can climb.

The top of the box should be enclosed with wire netting, as shown in the illustration. A doorway three inches square cut in the side of the upper box will allow access to this roof-garden.

A few coats of dark-green paint will finish these reptile pens on the outside, and they should be enamelled cream color, buff, or light green on the inside, so that the reptiles may be seen against the light background.

Chapter III

SUMMER-HOUSES AND PERGOLAS

A Simple Summer-house

For the back yard, or in the fields and woods near the house, a summer-house or pergola will be found a comfortable nook in which to spend many pleasant hours.

A simple summer-house is shown in the illustration, Fig. 1. This is made of four posts, has a shingled roof, and is provided with seats on three sides. Obtain four spruce posts four inches square, or four tree-trunks from four to six inches in diameter. Plant them in the ground, forming a square of six feet. The posts should be embedded for at least two feet, and, to insure them from decaying too quickly, tar or pitch the bottoms, or give them two or three good coats of asphaltum varnish. The posts should stand seven feet above ground. Across the tops of the posts nail two-by-four-inch joist, with lap joints as shown at A in Fig. 2. With four more pieces of joist form the roof rafters, cutting a notch in each joist where it fits over the corners at the head of the posts. At the peak, the joist are bevelled where they meet.

Fig. 1, Fig. 2

Join two of the pieces at first; then lap the remaining two on both sides of them, nailing all the ends securely with steel wire nails. Put one middle rafter in on each side between eaves to the roof. It would not look well to have to roof the corner ones; then nail shingle lath or scantling on the four sides to receive the shingles. The rafters should overhang the top frame about twelve inches, so as to form the stop on a line with the posts. Begin at the bottom and at the middle of each side to shingle the roof, working out to the corners and up through the middle to the peak. To prevent the roof leaking at the corners, bevel the shingles at one side, then lap those on the other side over them and bevel the edges. Some builders lay a strip of tin flashing over the edges as well as in the valleys of a roof to insure a perfectly water-tight joint. Use galvanized nails. To hide the rough rafters and shingle lath, the inside of the roof may be lined with narrow, matched boards; then the wood-work may be given a coat or two of paint in some desirable color.

A Back-yard Pergola

A back-yard pergola is constructed from two upright posts four inches square, a cross beam two by six inches, and eight joists laid across from the post bar to the top of the back fence. This style of pergola is particularly adapted to city yards and those surrounded by a board fence. In the event of there being no fence, the ends of the joist or roofing beams may bear on a two-by-six-inch cross bar that rests on two more posts corresponding with the front ones.

The posts are four inches square, of spruce or any other available wood, and are planed on all four sides. They are embedded in the ground for about two feet, and, to prevent them from sinking or shifting, place a large, flat stone in the hole on which the post will rest, and around it pack earth and stones instead of earth only. A lap cut in the front top end of the post will admit the two-by-six-inch cross beam. The posts are seven feet apart, and the cross beam ten feet long, with the ends cut as shown in Fig. 3 on page 56. The front end of each joist is rounded under as shown, and to make a more secure anchorage a notch two inches long and an inch deep may be cut at the under side of each joist, so that they will fit down over the upper edge of the cross beam. Make all the joints and laps fast with steel wire nails; then give the wood-work a few coats of paint.

Seats may be built in on two sides and supported with under braces or brackets to prop up the front edge, and a back-board may be nailed fast to the posts and fence.

A Toadstool Tree Canopy

Where there is a large tree on the place or near the house, a toadstool canopy (Fig. 4) may be constructed above a comfortable seat. The framing of the canopy is shown in Fig. 5, where the arrangement of corner rafters and braces can be clearly seen. The tree end of each rafter is bevelled (or cut on a slant) and nailed fast with steel wire nails. The under braces are keyed to the tree by cutting out a wedge of the bark, so that the lower end or point of the bracket will fit into it. These ends are to be well nailed to the tree-trunk, as they are the main props to hold up the roof. Between the corner rafters let one rafter in on each side; then nail shingle lath on the top of the rafters, and to these the shingles are fastened.

A seat eighteen inches wide may be built about the foot of the trunk and supported by two-by-three-inch joist let into the ground a foot or eighteen inches. Instead of shingling this roof, it may be thatched with salt hay arranged in flat tufts and nailed onto the lath. Begin at the lower edge to do this and thatch one line first; then begin on the end of the line above it and arrange the tufts closely side by side, and nail them fast. The last line at the top should have tar paper under it, closely fitted, and nailed to the tree trunk with copper tacks and painted. This will deflect the water and prevent it from running down the trunk and wetting the seat.

A Rustic Pergola

A simple but effective and useful rustic pergola is shown in Fig. 6. All the posts, cross-pieces, braces, and stringers at the top are of undressed wood, having the bark on. The corner posts are from four to six inches in diameter, and are embedded two feet in the ground. They are seven feet above the ground, and on top of two sets cross-stringers are made fast and braced with angle brackets. A sharp hatchet, a saw, and a hammer will be the only tools required for this work; and where an angle piece is attached to a post, the bark and wood should be cut away on the post, so that the bevelled edge of the bracket will lie snugly against it. It should then be nailed fast with long steel wire nails. This pergola can be made of almost any size, but for one of moderate proportions it should measure eight feet square and seven feet high. Seats of smooth boards may be arranged on three sides between posts, and wires may be run up and down and crosswise, on which climbing vines may be supported.

Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8

A Circular Pergola

A circular pergola will present a pleasing appearance in any yard. It is made from six rustic posts, six supporting beams, and eleven top rafters, as shown in Fig. 7.

Tree-trunks of the proper size and length may be cut in the woods, or some locust posts can be purchased at a lumber-yard. The bark is to be left on, and the posts are to be planted two feet in the ground in a circle eight feet in diameter. The tops of the posts should be sawed off so that they are all an equal distance from the ground. On top of them nail six pieces of joist, two by four inches, with the narrower side resting on the posts.

The joist must be bevelled or mitred so that they will fit snugly at the posts. Spike them fast to each other and to the posts with large steel wire nails. The top rafters should be of two-by-three or two-by-four inch spruce, planed or left rough, and arranged equal distances apart, so that they will form a large circle on the supporting beams. These are to be nailed fast and painted if desired. Vines may be planted close to the posts, so that as they grow the thick mass of foliage will make a shady top to the pergola.

If desired, a few seats may be arranged between the posts or columns, but portable seats would be more in keeping with this style of pergola.

A Summer Shelter

A design for a comfortable summer-house is shown in Fig. 8. The posts are set on an oblong, seven feet wide and twelve feet long. Seven or eight inch posts are planted in the ground, and the top rails are arranged as shown in Fig. 2. The rails can be of two-by-four-inch joist, and should be cut and neatly lapped at the ends, as shown at A in Fig. 2. A ridge-pole forms the centre support to this roof, and from it the rafters are run down to the top rails. Over these the shingle lath are nailed, and then the thatching of salt hay or shingles may be laid on. A wind-speeder and a weather-vane may be arranged at either end of the roof, as shown in the drawing, and seats may be built in between the end posts, with a supporting rib at the middle and braces under the seats. There is room enough under this roof to swing a hammock.

Chapter IV

WEATHER-VANES AND WINDMILLS

From the time of the earliest habitation of the earth, nature’s great forces, wind and water, have been employed to furnish power for man’s uses. Wind engines and mills for motive power have become almost obsolete in and about the great cities, as they are so cumbersome and uncertain, but in the country they are still used to a great extent for pumping water, milling, and operating light machinery.

Windmills have been made in a number of shapes by the people of different nations, and some of them are very picturesque, especially the Dutch wheels and those made in the eastern part of the United States a century or more ago, many of which are still working.

Windmills will never go out of use entirely, no matter what cheap motive power will eventually run the world; for when they are once set up properly they cost nothing to operate, and if a wheel is well made it will last for years with but trifling cost for repairs.

Windmills, weather-vanes, pinion-wheels, and wind toys of all descriptions have been made by boys in every age, and each generation goes on to invent or think of something new for the same old wind to play with that has toyed with the world’s wheels for centuries. The illustrations and descriptions on this and the following pages will be found helpful in the construction of wind machinery that shall be both novel and practicable.

A Pinion-wheel Weather-vane

The easiest sort of a pinion-wheel and weather-vane to construct is shown in Fig. 1. It consists of a piece of stout tin or sheet-iron, a wooden shaft twenty inches long, and a fan-tail twelve inches long and seven inches wide at the rear end.

Fig. 1, Fig. 2, Fig. 3

Punch a small hole in the centre of a sheet of tin or iron not less than ten inches square, and with a lead-pencil compass draw a circle ten inches in diameter. Half an inch inside of this draw another one nine inches in diameter, as indicated by the light lines in Fig. 2. One inch from the centre draw a third circle making it two inches in diameter; then divide the disk into eight equal parts.

With a cold chisel cut on the lines, as indicated in Fig. 2, and bend the metal ears as shown in drawing No. 1, so that the corners will set back an inch from the rim. With a stout pair of shears cut around the outside line and free the wheel from the sheet of metal.

At the front of the wheel fasten a spool with steel wire nails driven through the tin to act as a hub. Then give them both a coat or two of paint.

Make a shaft from hard wood an inch square, and cut it in from one end about ten inches, as shown in Fig. 3. At the other end bind the wood for an inch or two with linen line or fine wire to prevent its splitting, and bore a hole in the end with an awl. Through the spool and disk, and into the hole in the shaft, drive a flat-headed steel wire nail or a screw, three-sixteenths of an inch in diameter, to act as the pinion on which the wheel may revolve.

From light wood, three-eighths of an inch in thickness, cut a fan-tail seven inches wide at one end and two at the other, and, having passed it through the cut in the shaft, make it fast with small nails or screws.

Balance the shaft and wheel on your finger to determine where to pierce the hole through which the upright shaft on the pole should pass; then bore it out with bit and brace so that the shaft will fit snug but not tight.

To the top of the shaft, over the hole, attach another spool, so as to form a longer bearing; or a strap of metal may be tacked so that it will bridge up over the hole about two inches. In this bridge a corresponding hole may be cut, through which the vertical shaft or pin will pass. This is to hold the vane steady on the long pin of quarter-inch round iron driven into the top of the pole, and prevent it from dipping forward or backward.

Place this vane on a shed, the end of a barn roof, or on a high pole where the wind has free access to it.

A Wind-speeder

Wind-speeders may be constructed of metal or partly of wood, but one that can easily be made by a boy consists of two sticks, four ordinary tin funnels having their ends stopped up with a plug of wood, and a pole, into the end of which a long iron pin is driven and on which the hub revolves. Fig. 4.

Two hard-wood sticks thirty inches long and three-quarters of an inch square are cut at the middle so that they will lap, and with steel nails they are attached to a hub three-quarters of an inch thick and three inches in diameter, in the centre of which a quarter-inch hole is bored. The end of each stick or arm is cut in to receive the funnels, and they are held in place by straps of tin passed around each neck and tacked fast to the top and bottom of the cross sticks.

With a sharp-pointed awl or punch a small hole is made through the strap and neck, and a long, slim steel nail is driven through both into the end of the sticks to give the funnels an additional purchase.

Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9

To reduce the friction and to prevent the wood from wearing away at the under side of the hub, a large flat washer should be attached to the wood with copper tacks driven closely all around the outer edge. Before the speeder is slipped over the upright pin, a short piece of small gas-pipe or tubing should be placed over it so it will rest between the hub and the top of the pole. Two coats of white or light-colored paint will improve the appearance of this speeder.

The Arrow Weather-vane

Of all the weather-vanes that have ever been made, the balanced arrow is undoubtedly the oldest and most popular; it is the universal type of its class, and, from the simple arrow that a boy can whittle from a shingle to the beautifully gilded vane that crowns the pinnacle of some great building, it is everywhere in evidence. Fig. 5.

The arrow-vane can be made any length to suit the height at which it may be placed, but for the house, barn, flag-pole, or tower not more than fifty or sixty feet high, it should be from twenty-four to thirty-six inches long, with the blade from five to six inches in width.

The most substantial vane is made in three pieces, the point, shaft, and blade. The shaft is made from hard wood, three-quarters of an inch square, in the ends of which cuts are made to receive a tin or sheet-metal point and blade. These are held in place with steel nails driven through the wood and clinched on the opposite side. The arrow is balanced and a hole is then made in the shaft through which the upright pin or rod will pass.

A ferule or ring is driven on the upright rod to hold the arrow in the proper place, and below it two rods should be arranged at right angles, at the ends of which the letters N, E, S, W are soldered. These rods may be of brass or wood, and if the wood is used it should be of hickory or locust, half an inch square or round, and slit at the ends to receive the letters of tin or sheet metal. These latter are held in place with slim steel wire nails driven through the wood and metal.

At the top of a flag-pole these arms should be mounted above a gilded ball, and they should be, if of brass or copper, held securely in place with wire or solder. If they are of iron, it would be well to have a blacksmith weld them, so that they will be rigid and stay in place.

Wooden Vanes

In Fig. 6 some suggestions for wooden vanes are shown that can be followed with the scroll saw and jackknife or a compass saw and carving chisels. These vanes can be made in almost any size that will not be out of proportion to the building or pole they are to be mounted on.

The fish is cut from wood five-eighths of an inch thick, and all around the edges the wood is bevelled so as to give the fish a rounded effect. The fish is balanced on the edge of a piece of wood to determine where the rod will pass through it; then with a quarter-inch bit the hole is carefully bored through from top to bottom. The compass-point letters can be made from sheet tin and supported on two cross sticks and a stout wire hoop from twelve to fifteen inches in diameter.

The lady with the parasol is cut from wood half an inch in thickness. She is fifteen inches high and twelve inches wide across the bottom of the skirt. From the shoes to the hat, a quarter-inch hole is bored entirely through the body, but if this be found too difficult, a staple at the top and bottom will answer instead. Through these staples the rod will pass.

The squirrel is made in the same manner as the lady, and either balanced on the rod which passes through the body or by means of staples driven at one side. A ring and washer should be provided on the rod for the bottom of the vane to rest on, as there would be too much friction if the vane rested on the top end of the pole into which the rod is driven.

The bird vane is cut out and balanced the same as the fish, and the modelling may be carved in the wood or painted, to give shape and character to the vane. Otherwise it would be but a blank piece of thin board cut in the shape of the outline.

In all of these vanes it is necessary, of course, to have the greatest overhang on the side opposite to that facing the wind, otherwise they would not indicate properly.

A Wind-pennant

An excellent and reliable wind indicator is shown in Fig. 7, the illustration of the wind-pennant. It consists of a metal hoop on which a funnel-shaped silk or cotton fabric pennant is sewed fast, and when this latter is filled by a breeze it stands out, as the illustration shows.

A pennant fifteen inches long should have a hoop five inches in diameter, and it can be made either from wire rings bent as shown in Fig. 8A, or from sheet metal, as shown at Fig. 8B.

The sheet metal should be perforated with small holes all around one edge to pass the thread through, when sewing the fabric fast, and the edges should be smoothed so as not to cut the threads. If the hoop is made of wire, a ring should be formed at top and bottom for the upright rod to pass through; but if it is of sheet metal a hole at the top and bottom will admit the rod.

This pennant is very useful at the mast-head of a boat, and is much more satisfactory to watch than the perpetually bobbing flat pennant, as it does not break or fall down unless it is calm, and only shifts from side to side as the wind blows it.

On a flag-pole or staff above the pennant the compass points are arranged, and if these are made from copper or brass, the letters may be soldered fast to the ends of the arms. Where the arms cross, they are to be flattened as shown in Fig. 9A, and lapped together, as shown in Fig. 9B. After the hole is bored they should be bound to the upright rod with copper wire and soldered so they will remain in a fixed position that the wind cannot alter. Fig. 9C.

Sticks of hard wood may be substituted for the metal arms, and the sheet-metal letters let into saw cuts made at the outer ends.

A Basket-ball Vane

An odd wind indicator is shown in Fig. 10, illustrating a ball vane in a basket. It consists of a flat basket, with a rim six inches high, made of wire cloth with square meshes; inside of this a silk or cotton covered ball of wire is placed and blown by the wind from one side to the other of the basket. Of course, the direction the wind is coming from is opposite to that taken by the ball.

The basket should be twenty-four inches in diameter, six inches high, and supported at the top of a pole by wires attached from the upper and lower edge of the outer rim, and leading up and down to the pole, the ends being made fast to staples or screw-eyes.

Fig. 10, Fig. 11, Fig. 12, Fig. 13

The ball, which is made of wire hoops and fastened together with fine wires, should be from four to six inches in diameter. It is covered with silk or thin muslin sewed on in the same manner in which a baseball is covered with leather. The framework must be of light spring brass or copper wire, and where the hoops cross it would be well to touch the unions with solder to insure a firm joint and make the ball rigid.

If the ball should blow out of the basket at any time, it may be necessary to lace wires across the outer rim at the top, so as to form a confining net-work.

Above the basket the compass points can be arranged on wood or metal arms, and when complete and mounted this weather-vane will present a most unique appearance.

A Merry-go-round

A merry-go-round like the one shown in Fig. 11 is an interesting wind toy and pleasing to watch, as the boats keep sailing round and round. It is made from a child’s hoople properly braced with cross sticks and mounted on a hub. Four flat-boats are made and attached to the outer edge of the frame. When rigged with sails and placed at the top of a post, on a rod, the boats will keep up a continual sailing so long as there is any breeze. A hoople three feet in diameter is best for this purpose, as it gives more space between the boats.

Double sets of braces or cross strips are arranged inside the hoople, and, where they meet at the middle, laps are cut in the sticks so that they will fit flush, as shown in Fig. 12.

The sticks are placed seven inches apart, and are five-eighths of an inch square; under the lap joints a plate of wood nine inches square is attached by means of screws or steel wire nails, to strengthen the unions of the cross sticks as well as to make a platform, at the under side of which the hub is arranged. A plan of the hoople, the cross sticks, and the location of one boat is shown in Fig. 13.

The boats are placed so that the outer edges of the bottoms rest on the top of the hoople. The inner edges rest on two of the cross sticks, where they are securely attached with long, slim screws passed up through the sticks and hoople and into the bottoms of the boats.

A block of wood four or five inches square and six inches long is to be shaved down at one end so that it is round and about one inch and a half in diameter. This is attached to the under side of the plate, at the middle of the hoople frame, so that the small end projects down; and through it a half-inch hole is bored.

An iron pin half an inch in thickness and eighteen inches long is to be driven into the upper end of a post over which the hub and hoople frame will fit. The upper end of the iron pin is threaded and provided with two nuts. One of these should be screwed down tight on the other with a washer between to act as a lock-nut, so that the revolution of the merry-go-round will not tighten or loosen them when once adjusted.

The boats are ten inches long and three inches wide at the middle, but they taper fore and aft, as shown in Fig. 13A. They are cut from pine or white-wood two inches thick, and painted in gay colors. The masts are fifteen inches high, and the sails are provided with booms, gaffs, and jib-booms, also with rings which hold the sails close to the masts. The rigging is of copper wire, as the constant motion would soon wear out string or line and the sails would fly loose.

Each boat must be in good trim to keep the motion uniform, and if the sails wear out too soon, tin ones should be made or the muslin ones may be given a coat or two of white paint. Pennants at the tops of the masts will add to the effect.

A Wind Turbine

The wind turbine shown in Fig. 14, on the following page, is made of two hooples about thirty inches in diameter, four cross sticks, two wire hoops, and eight V-shaped tin blades.

The cross sticks, thirty inches long, are cut and lapped at the middle and attached to the edge of each hoop with screws or nails. The wire hoops are twenty-two inches in diameter, and are fastened to the cross sticks with staples. The plan of one hoople and the cross sticks, the wire hoop and the location of the blades, is shown in Fig. 15.

The outer corners of each blade are tacked fast to both the upper and lower hoople, while the inner corners are wired fast to the stout wire hoop. The blades are made from tin or sheet iron twelve inches long and six inches wide, and, when bent in the shape of a V, the width across the open end should be four inches.

The blades are depended upon to hold the upper and lower frames in place, and when the turbine is on the top of a post with a rod running through the middle of the cross sticks, around which it revolves, the wind will keep it spinning at a high speed.

Power can be developed with this turbine, but only a very small percentage as compared with a windmill the entire surface of which is continually exposed to the breeze. In the turbine only two or three of the blades are effective at any one time.

A Barrel-hoop Pinion-wheel

From a flat hoop, a few pieces of tin or sheet iron, and some thin wood, a barrel-hoop pinion-wheel may be made similar to the one shown in Fig. 16.

The barrel-hoop will measure about twenty-one inches in diameter, and the hub should be made five inches in diameter, two inches thick, and cut in, as shown in Fig. 17A, with nine places to receive the small ends of the metal blades. The hub revolves on a pin which is driven into a block of wood three inches square, as shown at Fig. 17B. A hole is made in the block from top to bottom, through which a half-inch rod will pass. The rails that support the tail are let into each side of the block and are securely fastened with screws, as shown also at Fig. 17B.

The fan-tails are twenty-four inches long, one inch and a half wide, and half an inch thick, made of ash or hickory that will bend easily, so as to be drawn in against the blades forming the tail.

The tin blades are cut five inches wide at one end and one inch and a half at the other, and fastened to both the hoop and hub with tacks, as shown in the illustration.

The blades forming the fan are of half-inch wood, one V-shaped piece and two end slats cut as shown in the illustration. They are all held in position by the two rails that extend back from the pinion block and two that are set at right angles to them, and which hold the upper and lower edge blades.

This wheel may be placed at the top of a post two or three inches square or round, in which a half-inch iron rod or long pin has been driven, leaving about six or eight inches of it projecting above the top of the post. On this the block turns as the wind acts on the fan-tail.

A Pumping Windmill

A simple wheel, with spokes and sails, that is commonly employed on canal-boats and barges, and in a small way for raising water in a suction-pump, is shown in the illustration of a pumping windmill. Fig. 18.

Fig. 18

It consists of a hub, six spokes, a fan-tail, and a trunk or upright to which the wheel is attached. The hub is a hexagon of six inches and six inches long, so that one spoke can be driven into a hole made in each side, as shown in Fig. 19. The spokes are three feet long, three by one inch and a half at the hub end, and one by one inch and a half at the outer end. They are driven snugly into holes in the hub three inches long and one inch and a half wide, and pinned to hold them in place.

The hub should be made of hard wood, and it would be well to have a blacksmith put a thin iron band around each end to prevent it from splitting. The holes may be cut with a mortise chisel and mallet, and care must be taken to shape them evenly, so that the spokes will line properly.

Triangular pieces of twilled muslin sheeting are tacked to the face of each spoke, and the loose corner of each is caught to the next spoke end with a rope and snap. This makes an outlet between the leech and spoke of each space between spokes for the wind to pass through, thereby causing the wheel to revolve.

The wheel is held in place to the head of the supporting post by a shaft which passes through the hub and is bolted fast at the front of it with a nut. A blacksmith will make this shaft, as it is somewhat beyond a boy’s ability unless he has had some experience in blacksmithing. It should be shaped as shown in Fig. 20.

The shaft is an inch square where it passes through the hub, and at the front end it is threaded and provided with a nut and washer. At the end of the square part, A, where the rear of the hub will stop, a shoulder, B, should be welded on to hold the hub in the proper place.

An inch beyond this square shoulder, another one, C, is welded on the shaft, which for the balance of its length is three-quarters of an inch in diameter.

Just beyond the shoulder or collar, C, the crank is formed, two inches wide and three inches out from the shaft. Beyond the crank another collar, CC, is welded on, and beyond this the shaft should measure six inches in length.

The total length of the shaft is fifteen inches, and all the collars and smooth surfaces should be dressed down with a file and then painted. The head to which the fan-tail is attached is made of two blocks, cut as shown in Fig. 21, and fastened five inches apart on the lower rails that support the long rails to which, in turn, the tail is attached.

Fig. 19, Fig. 20, Fig. 21, Fig. 22, Fig. 23

The upper ends of the blocks are cut out so as to admit the shaft. The collars, C, and CC, are at the inside of the blocks. To hold the shaft in place, straps of iron are screwed fast over the top of each block.

This head rests on the top of a trunk or hollow square post, through which the rod passes that connects the crank with the piston-rod of a pump. This trunk is of three-quarter-inch wood and seven inches square, as shown in Fig. 22A; and at the top of it a flat iron collar, B, is screwed fast.

To hold the head on and keep it in the proper place, four iron cleats (Fig. 22C) are screwed fast to the under corners of the head to grip the projecting edge of the collar. This arrangement will hold the head stiff, but will allow it to move about as impelled by the wind acting on the tail.

A little grease or vaseline should be placed on top of the collar, so that the head will move on it easily. The top of the connection rod should be attached to the crank, as shown in Fig. 22D, where a strap of iron passes over the crank and is bolted to the top of the hard-wood rod.

The tail is attached to the head as shown in Fig. 23, which is a rear view of the head block and a portion of the forward part of the tail.

The tail is thirty-three inches long and twenty-four inches wide at the rear end, and is made of boards three-quarters of an inch in thickness. If the mill is to be placed over a pump, a platform should be erected to which the trunk may be braced with props, as shown in the illustration, and on which the lower end of the trunk may rest.

Guy rods or wires can also be carried from the upper part of the trunk down to pegs driven in the ground, which will lend additional support and steadiness to the upright shaft. To start the wheel, snap the ends of the sheets to the spoke ends; to stop it, unsnap the ends and furl the sails around the spokes, and tie them securely with a cotton cord.

A Windmill and Tower

Windmills, of course, can be put to many different uses and are generally of sufficient size to develop a considerable amount of power. Fig. 24 shows a windmill and tower that any smart boy can make of wood, an old buggy wheel, and a few iron fittings that a blacksmith will make at a nominal cost.

Fig. 24, Fig. 25, Fig. 26

The tower is the first thing to make, and it should be constructed of four spruce sticks sixteen feet long and four inches square, thirty inches square at the top and seventy-two inches square at the base.

The deck is thirty-six inches square, and projects two inches over the top rails all around. The rails and cross braces are of spruce or pine strips four inches wide and seven-eighths of an inch thick, and are attached to the corner posts with steel wire nails. The corner posts are embedded two feet in the ground, leaving fourteen feet of tower above the surface. The rail at the bottom, attached to the four posts, is three feet above the ground, and, midway between this and the top rail under the deck, the middle rail is run around the posts.

The cross braces are bevelled at the ends, so that they will fit snugly against the corner posts and in behind the rails where they are securely nailed to both posts and rails.

One of the posts with its binding of rails and cross brace is shown in Fig. 25, and this clearly illustrates how the union is made.

The posts, rails, and braces are all to be planed, so that they will present a good appearance when painted; and at one side of the tower a ladder can be made of scantling, and the lower end of it attached to a rail nailed to the corner posts a few inches above the ground.

Across two of the rails half-way up the tower a board is nailed, to which the lower end of a trunk is made fast, if a wheel similar to the pumping-mill is to be used. But if a wooden mill is desired, it can be constructed from a buggy-wheel and six blades of wood, to appear as shown in the illustration.

At a wagon-shop an old wheel can be had for little or nothing, and with a little work it may be converted into the frame of a windmill.

Each spoke is to be cut at an angle on one side so that the blades, when attached to them, will have the necessary pitch to make the wind act on them. This can be seen in Fig. 26, which is an edge view of the wheel showing a top, bottom, and middle blade.

The blades are eighteen inches long, twelve inches wide at the outer end, and six inches in width next the hub. They are three-quarters of an inch thick, and are attached to the spokes with screws. If it is found necessary, a wire can be run from the outer end of each blade to the end of the next spoke, to steady the blades, as shown in the illustration.

The crank and shaft can be arranged as described for the pumping-mill, and a fan-tail to keep the wheel up into the wind is made in proportion to the size of the mill.

All the wood-work should be painted to give it a good appearance. A mill of this size will develop at least quarter of a horse-power in a fifteen-mile breeze.

Chapter V

AËRIAL TOYS

The Elastic Flying-machine

To have a flying-machine is the dream of every boy. To build a large one is exceedingly difficult, but a small one run by a rubber band can be easily constructed. You will not be able to fly up to the roofs of houses and spires of churches, but it will furnish you much amusement, without the danger of a broken neck.

I will tell you exactly how I constructed one of these machines, and then you can make one for yourself. The backbone was a knitting-needle. The wings, or more properly aËroplanes, were light bamboo strips (taken from a Japanese fan) and covered with the Japanese paper which is used for napkins. (Fig. 1.)

Fig. 2 shows the backbone and its parts. Cut from thin brass or copper a piece shaped like No. 1, and bend the top over, as shown at No. 2. Brass suitable for this may be bought at any hardware-store, or an old article made of proper metal may be cut up. The shell of a metallic cartridge is excellent. The brass should be as thin as possible, to be light, and so that it may be cut with an old pair of shears and bent easily. First cut the piece out roughly with the shears, and then trim it into shape with a small file. Scrape that part of the metal bright and clean which will form the inside of the roll, and then bend it around the needle so that it will fit nicely and snugly.

Fig. 1, Fig. 2, Fig. 3

This must be fastened to the forward end of the backbone. The best and lightest way is to braze it, as the tinsmiths call it. File the polish from the end of the needle, and wet it with soldering fluid, which may be bought at a tinner’s, or made by adding zinc to muriatic acid until no more is dissolved. Slip on the brass support just where you want it, and lay on a piece of solder about half the size of a grain of wheat. Now hold this in the flame of a candle, in the gas, or near a hot stove, until the solder melts. Take it away and let it cool, and you will find that the solder has run into all the cracks and joined the pieces beautifully. File off any excess of solder or rough ends, and you will have a neat and workman-like joint, as well as a very light one.

Cut out the piece No. 3, and bend it into the shape shown at No. 4. In this case you will need to file the upper surface of the groove bright and clean. Take off the polish from the other end of the needle, and then put the stern-post, as it may be called, in place, and hold it there by twisting a fine wire around it and the needle. Be careful to get both supports turned the same way. Then braze and finish it as before.

Make the piece No. 5, and form it into the shape No. 6. This is fastened by brazing to the backbone, as shown in the lower diagram. Take a piece of another knitting-needle, and make a shaft like No. 7 by heating red-hot and pounding the end into a hook with a small hammer.

Put the straight end of this shaft through the hole in the stern-post which was formed by bending the metal, and then make a shoulder on it, as follows: bend a piece of fine wire into a ring the size of the needle, and braze this to the shaft about a quarter-inch from the stern-post. This ring of wire keeps the shaft from slipping through the hole when the rubber is stretched. File a flat point on the straight end of the shaft.

Next make the wings. For the ribs I used the thin bamboo strips taken from a Japanese fan. The paper is pulled or soaked off, and the thin strips cut close to the handle. The front of the wings is made as in the upper diagram of Fig. 3. Take one of the largest and stiffest strips of the bamboo, find the exact middle, and lay it evenly across the wing-support (No. 6 in Fig. 2), which is already in place on the backbone. Lash it to the support with waxed sewing-silk. Over this piece lay two others of equal length, making them come together (but not lap over) just above the backbone. When well secured, add three pieces of the same length above the two, placing them in such a way that the joinings shall not come over the joinings of either of the other pieces, and thus weaken the wings.

The ribs are made from the bamboo strips, cut the proper length and lashed to the front edge. The other ends are fastened to a cross-rib to make them take the same curvature. The lower diagram of Fig. 3 shows how the ribs are spaced.

Cover the wings with thin, strong paper. The best is Japanese paper, such as is used in making napkins. This is exceedingly light and very strong. It should be sewed, not gummed, as the gum makes the paper tear easily, and your sticky fingers spoil the whole cover very quickly. The paper is tough enough to be sewed, using a fine needle and white cotton, and you will get a neater and much more satisfactory job.

Make a triangle by lashing together three pieces of bamboo, two being about two inches long, and the third one inch. This triangle is lashed to the backbone just behind the wings, with the short side down; its position may be seen by a glance at the picture of the finished machine. It is kept rigid by running stays, made of waxed sewing-silk, from the lower corners to the stern-post, from the right-hand corner to the middle of the left wing, and from the left-hand corner to the middle of the right wing.

Just in front of this triangle fasten a piece of the bamboo, and make two small guiding vanes or rudders. These are made in a similar manner to the wings. Tie threads to the lower corners of the wings, and then to the triangle, drawing them down until they have the proper angle. The guiding-vanes should have a greater angle than the wings—that is, they should be drawn farther down.

It only remains now to make the screw and attach the rubber band. For the hub of the wheel you will need a small cork. This cork must be kept from turning on the end of the shaft. If the sharpened end of the shaft carrying the hook for the rudder was simply stuck into the cork, it would soon wear loose and turn easily. To make a firm hold for the shaft, bore a hole through the cork about a quarter-inch from the large end, and drive a plug of soft wood into this hole. The flat-pointed end of the shaft can now pass into the cork and be forced into the wood, being careful to have the end of the point parallel to the grain of the wood. This will give a firm hold and prevent the screw slipping.

The blades of the screw are made of thin paper gummed on to short pieces of bamboo. Lay one of the bamboo spokes on a piece of thin, stiff paper, and then gum over it a small strip of the thin Japanese paper before referred to. When this is dry, cut it down to the proper shape and sharpen the end of the spoke. Force these spokes into the cork so that all the blades will turn the same way, as shown in the picture—i.e., so that when the screw is turned the blades will all strike the air in the same manner and tend to force the machine forward, not so that some try to push it forward and some backward.

Select a rubber band of the proper size—such a one as will stretch the length of the backbone easily and not be so strong that, when stretched, the backbone is bent into a bow. Tie this band to the forward support with a string, and then draw it back and slip it over the hook on the shaft.

To wind up the machine, hold it by the backbone and turn the screw the wrong way until the rubber is twisted tight. Then hold the machine up, let go the screw, and when it is revolving rapidly, give it a gentle push forward. If it pitches head-first, draw down the wings; if tail-first, let up the wings or turn the screw the other way. If the wheel does not revolve rapidly cut off part of the blades or use a stronger rubber. Some little adjustment of the kind is usually required before the thing moves properly.

A contrivance of this sort should be very light. The one before me has wings two feet from tip to tip, and it weighs when complete—backbone, wings, rubber, screw, etc.—only one-third of an ounce.

Self-acting AËrial Car

Here is an idea for a mechanical toy to be used either on a kite-string or a cord stretched from a flag-pole in the yard or a handy tree. The only condition is that the lower end of the cord is directly against the wind. The elevation at which the car can run will depend on the strength of the wind and sail area of the machine. The only wood used is the lightest and driest pine that can be procured. The carriage is made entirely of one-half by one-quarter inch wood, and is composed of two strips, fourteen inches long, placed one inch apart. The two guiders are two inches from each end, and have a small screw-eye on the lower extremity, through which the cord is passed. On the upper side of the carriage, exactly in the centre, are screwed two eyes, which should measure a little over a half-inch in diameter of the inside of their circle. Through these is passed the spar of the sail, allowing enough space to insure easy turning, as the spar acts as an axis on which the sail turns when on its downward trip. This spar is at right angles with the carriage. Two upright sticks measuring twenty inches, and the same dimensions as the material used for the construction of the carriage, are next added. These should be slightly pointed at both ends, and a cross-bar at the top of these uprights securely fastened gives additional strength. The balancing-bar is made of three-eighths by three-eighths inch pine, tapering at the lower end, and is ten inches in length, and fastened to the carriage by two strips of wood—five by one-quarter by one-eighth inch. The wheels are formed as follows: Take a piece of one-eighth inch pine, which should be at least three inches wide. On this place a strip of wood, we will say, for instance, ten by one-quarter by one-half inch. By driving a small wire nail through both pieces of wood, and inserting a sharp knife-blade through the upper piece of wood, and turning (the upper piece) slowly from left to right, you will find you can cut a perfect circle in the lower piece of wood. The wheels are formed by this process. It takes four pieces of stiff card-board and two of wood to make the wheels for the carriage. The diameter of the wooden wheel is one and one-half inches, while the card-board disks are two and one-quarter inches. The wheels in the draught are a trifle smaller, but by experiments it is found that the above-sized wheel makes faster time. You will see that after cutting out your disks the hole made by the wire nail is exactly in the centre. Run a small wire nail through the three disks, placing the wooden disk in the centre and the card-board ones on each side (this makes three disks for each wheel). Put some glue on touching surface, and clinch the three together with pins or wire brads. The place where these nails go is shown by the spots on side draught of the wheel. The axle-tree is made of oak, and at the extremities a piece of stout wire is inserted, which extends one-eighth of an inch beyond the wood of the axle-tree. The hardest axle-tree is one made from the shafts of an old clock. Take particular care that the wheels run very true, as the success of the machine depends to a great extent upon this.

Fig. 4

From the lower extremity of the balancing-rod hangs a weight. The easiest way to make this weight is to take a small bag, and fill it with sand until the machine balances (the sail in horizontal position). Having progressed thus far in the construction of the machine, turn the sail in a horizontal position, and attach a cord from one side of the cross-bar to a small grooved wheel at the aft end of the carriage. From the screw-eye at lower extremity of the balancing-bar is attached a small rubber band; when stretched it will reach within three-quarters of an inch of the small wheel at the aft end of the carriage. It will be found, after the cord and rubber band have been joined, that upon letting go the perpendicular bars the sail will turn in a horizontal position. At the forward end of the carriage is a catch, to which is fastened a ring. The catch comes in contact with a block (previously placed three-quarters up the string). The detail drawings show the formation and working of the catch. Fig. 4.

Fig. 5, Fig. 6

The sail is made of light muslin, and extends in the form of a pair of wings, the cloth only reaching from the outside of the uprights to the ends of the spar, leaving a free space in the centre for the sail to pass through the carriage. The parachute is a small Chinese umbrella (pick out one that opens easily), and can be bought for a few cents. A small weight is attached to the handle with a few feet of cord. We will say that now you have completed the machine—you have a kite flying; run the string through the two guiders, place the two wheels of the carriage upon the kite-string, set the sail perpendicular, and fasten the catch with the cord. A stop-block has been previously placed on the cord twenty feet from the kite; now attach the parachute (Chinese umbrella). The force of the wind acting on the sail forces the machine up the incline of the kite-string at a rapid rate, skyward, until it reaches the block, which throws off the catch. The sail swings back to a horizontal position, letting the parachute drop. The sail being folded and presenting no resistance to the wind, the force of gravitation acting on the weight of the machine causes it to descend the kite-cord quickly, and return to the original starting-point of its flight. See Fig. 5, a side and end view, and Fig. 6, the parachute and the car on its return.

AËrial Boat-sailing

Study with care the accompanying plans. The materials are one-half by one-quarter-inch pine, free from knots, ten common brass rings three-quarters of an inch in diameter, two round-headed brass screws one inch in length, two flat-headed ones of the same dimensions, two small screw-hooks, and eight assorted brass screw-eyes, there being two of each size. Now that we have the material for the frames, we will begin with Fig. 7, which shows the sail and sheer plan. The frame is made of six pieces of wood. The top piece is exactly two feet in length. The two uprights which hold the wheels are each one foot and one inch long. The two angle pieces are one foot nine inches each. The lower horizontal strip measures two feet three and one-half inches, and is joined to the two angle strips by means of a screw-eye and screw at each extremity. Now cut a strip of pine, making it exactly three feet in length. Set it on the frame in an upright position, allowing a half-inch clearance from the upper horizontal piece. It should be eleven inches from one of the angle pieces at the lower end. Round the upper part above the horizontal strip; it should be brought to a taper at the upper end. This forms the mast. The lower part is uniform, and allows the weight to be moved up and down to insure a correct balance, which is regulated according to the force of the wind. The weight is made of one-and-a-half-inch lead pipe, and is two inches in length. A round plug of pine is driven in the centre of the lead pipe, and a hole is bored in the centre of the plug to fit the balancing-bar.

Fig. 7

One of the screw-eyes is inserted through the piece of lead pipe, and by this means the weight can be elevated or brought down the shaft and held firmly in the required place, which will depend on the force of the wind. In regard to the wheels, Fig. 8 shows the simplest constructed. They are made in three parts. Take two of the largest-sized wooden button moulds and a piece of thin board (cut in a circle) smaller than the button moulds. We will say, for instance, the button moulds are one and one-half inches in diameter, and the centre piece of pine is one inch in diameter and one-eighth of an inch thick. The way to get a true circle on this soft pine is to take the one-eighth-inch wood and measure on a separate piece of pine one-half inch, drive in a small wire nail in one extreme of the previously measured strip, and on the other extremity insert the point of a sharp knife. Place on the board used for centre of wheel, and turn in a circle from right to left several times. If the distance between the knife-blade and nail is one-half inch, the wheel cut out will be exactly one inch in diameter.

Insert a wire nail through the two button moulds, and place the inch wheel in the centre, gluing it at each contact surface. This will give you the grooved wheel.

Fig. 8

The drawing (Fig. 7) indicates how this wheel is fastened to the frame. The wheel can be made of two card-board disks two and one-half inches in diameter, and one wooden wheel two inches in diameter placed between them. They are joined by clinched pins, shown by the circle of dots in Fig. 8.

The dimensions of the sail are as follows: Main-sail—hoist, ten and one-half inches; gaff, eight and one-half inches; leech, nineteen and one-quarter inches; boom, fourteen and one-half inches. Jib—foot, eleven inches; hoist, sixteen inches—on the stay, twenty and one-quarter inches. The jib carries a boom, and the main-sail a gaff and boom. The material used for the sails is light muslin with hemmed edges.

Take a long chalk-line or heavy cord, and stretch at right angles to the direction of the wind. If the wind is from the north, the cord must reach east and west. Each extremity of the cord must be the same height from the ground, and can be attached from tree to tree, or from an upper-story window to a house near by.

When the boat reaches the extremity of the cord the operator at that end of the cord turns it, and starts it on the return journey.

If the cord is strung between two houses you will find the boat will sail back and forth, except when the wind is dead ahead or a few points either way.

A “High-flyer”

To make the “flyer” you will need a piece of thin sheet tin, zinc, or iron, that may be purchased from a tinsmith for a few cents; and for the engine a linen-thread spool, a piece of hard-wood stick, and a few steel wire nails will be required.

To begin with, obtain an empty linen-thread spool having a smooth hole through it, and in one end drive four one-inch steel-wire nails at regular distances apart, so as to form the corners of a perfect square; drive the nails in half-way, then file the heads off, and the spool will appear like Fig. 9. Next get a round hard-wood stick seven inches long, and around it, two inches from one end, make a deep cut with your knife. From this cut to the end of the stick shave the wood away so it will look like Fig. 11.

These two parts will complete the engine, and the next thing to make will be the flyer. Thin sheet-zinc will be found the best to make it of; and having obtained a piece, mark on it with a compass a circle five inches in diameter; mark two lines across this circle from edge to edge, at right angles, as shown by the dotted lines in Fig. 14.

From a piece of stiff paper cut a pattern in the form of one of the ears shown in Fig. 14. Lay this pattern on the zinc so that one of the lines will be in the centre of it, and mark the shape on the zinc; mark the other three ears in a similar manner, and then with a stout pair of shears cut out the flyer.

In the centre of it make a hole large enough for the small end of the stick to pass through it, and around it make four small holes at the centre of each ear, to correspond with the pins on the spool.

The flyer will then fit over the stick and pins and lay flat on top of the spool; bend its ears with your fingers so they appear like the propeller-blades of a steamboat, or like a windmill, and it will then be ready to fly. Fig. 10.

Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14

A “HIGH-FLYER”

When bending the ears they must be arranged so that the edge that catches the wind first will be inclined upward, as otherwise the flyer, instead of flying, will hug the spool tightly.

Another style of flyer is shown in Fig. 12, and is made of a circular disk of zinc four inches in diameter.

Make the five holes in the centre fit over the stick and pins. When all the places have been cut, bend the ears down as shown in Fig. 13, and when flying it turn it upside-down, letting the ears project upward.

To put the flyer in action, take the stick in your left hand, and over the small end of it place the spool, against which put your thumb to keep it from slipping. Wind strong cord around the spool, to the end of which a button is fastened to keep the cord from slipping through your fingers; on top of the spool place the flyer, and give the string a vigorous pull, at the same time releasing the spool with your thumb, and the centrifugal force will cause the flyer to revolve rapidly, shoot upward, and sail to a height of fifty or a hundred feet in the air, slowly descending as the revolutions diminish.

Larger flyers can be made in a similar manner; and to make a very large one, plant a post in the ground, having its upper end reduced to form a shoulder, as explained for the small stick. Get a round piece of wood several inches in diameter, and arrange four very stout steel-wire nails in the top of it. Make a tin or iron flyer twelve or fifteen inches in diameter, and use a piece of small clothes-line or cotton line to spin it with.

To operate it, wind the spool with the rope, and have some one under it to keep it from slipping. When you are ready to pull the rope, place the flyer on the pins, and as the spool is released give the rope a quick, strong pull, and the flyer will rise.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page