CHAPTER I. WHAT MAY BE SEEN IN THE HEAVENS. (3)

Previous
"And God said, Let there be light; and there was light."
Genesis.
"A sound of song
Beneath the vault of Heaven is blown."
Goethe.

T he unequal duration of Day and Night, the succession and regular return of the seasons, all the phenomena observable upon the earth, are but the effects of a cause which we must seek in the heavens. It is impossible to explain them unless we contemplate it on high, relegating our planet into the great chorus of the worlds, where it holds but a modest rank. Only, to perform this miracle, we must for a moment repress in ourselves the senses which deceive us by their exaggeration or appearances, and give free course to enlightened thought. It is by this means alone that we can succeed in fully demonstrating the close and perpetual relationship which exists between our planet and the other spheres composing what we call the Solar System.

Permit us here a parenthesis, or, shall we say, a digression?

The whole secret of science, the whole secret of human knowledge—in truth, the whole future of humanity—lies in these two words—Enlightened Thought.

And here, gentle reader, I solicit your assistance in endeavouring to elucidate a question which has a for a long time puzzled me. Why do we apply the word "light" to that which sets in motion the eye of the body, and to that which induces the operation of the eye of the mind,—to the singularly mysterious physical agent without whose intervention all the external world would be to man a dream or a void, as well as to the still more mysterious moral agent which illuminates the world within?

I anticipate your answer. "The light," you say, "which opens up to me the material world is a reality; the other is only an image."

And it is true that this is the solution which first presents itself to the mind. But the longer you reflect upon it, the more you will be inclined to agree with me that it is unsatisfactory. What, then, means this agreement among all peoples, past and present, to designate by the same words—as

Light To illuminate
Obscurity To obscure
Shadow To overshadow
Morning To darken
Day To clear away
Twilight To blind
Gloom To cloud

—those actions, processes, or operations which take place or are produced in the outer world, physical or material, and in the inner world, intellectual or moral.

Were your pretended "image" the result of purely personal impressions,—all persons are not equally apt in apprehending those fictitious relations which are the food of poetry,—were it, in a word, no more than an individual conception, and, therefore, eminently variable, I should not hesitate to accept your opinion: we should simply be discussing what are called, in scholastic language, the individual sense (sens propre) and the imaginative sense (sens figurÉ). But there exists upon this point an unanimous and universal agreement: all languages, living or dead, attest it; it embraces the aggregate of the members of the human family.

This is the first point which induces me to doubt the legitimacy of the proposed explanation. But I am confirmed in my hesitation by numerous other facts.

Let us emerge from the domain of rhetoric to enter that of experimental physiology and psychology. Too powerful a light blinds the organs of seeing. No mortal eye, unless with the aid of artificial appliances, can gaze upon the sun, the great source of light. If the vision is to act clearly, we must proceed step by step. If from a very light apartment we pass rapidly, and without transition, into a darkened room, or vice versÂ, we feel temporarily blinded: the eye demands a short time to recover, as it were, from its astonishment. If we fix our gaze for one or two minutes on a star of the first magnitude, as, for example, Sirius, and afterwards turn away abruptly, the eye will for a while remain insensible to stars of a less intense splendour.

These are incontestable physiological facts, which anybody may easily verify for himself.

Well, in the psychological order facts exist which are in all respects analogous. Take one of those truths which the human thought, labouring generation after generation, has taken centuries to discover or elucidate; place it suddenly before an unprepared mind; however luminous may be this truth, it will be simply shadow and darkness to the mind we speak of; it will not comprehend an iota of it. Why? For the very obvious reason that it lies outside its sphere of ideas, in every respect comparable to the sphere of vision, beyond which and within which there is no more room for the sensorial impressions. There, as here, we must proceed gradually, and arrange the transitions so as to produce the desired results.

It would be easy for me to develop this parallel by other and still more remarkable facts; but what I have just said will suffice to show that the line of demarcation which philosophers have, upon principle, desired to trace between the physical and moral order, has turned the mind aside from many fertile fields of research and speculation. Let us cite an example. The sun is the visible centre of light, heat, organic life; in fine, of all the movements of our material world. Yet it is but a relative focus, since the sun, with its planetary train, revolves, probably, in company with other suns or systems, around a centre as yet unknown; and as there is no reason why we should pause in this cycloidal progression, this second centre or focus of systems may revolve around a third, the third around a fourth, and so on. Thus we shall have an indeterminate series of relative centres; for the term does not exist of which we can say,—there is the beginning, or here is the end of the series.

We do not meet with the absolute in the material, any more than in the intellectual world. Truth, by its power of attraction, sets in motion all the wheels of our understanding; we seek after it eagerly, in the doubt which torments us, in the obscurity which surrounds us; we all feel the need of being enlightened by it, and warmed, and revivified; we all are in need of belief, and, at the same time, of possessing—let there be no illusion in this respect—a certainty or demonstration of what we believe.

But the truth which we think our own does not leave the mind at rest; a slight effort suffices, in fact, to teach us that the truth we accept depends upon another and remoter truth, and that the world of thought is thus carried onward in an interminable series of relative truths; unless we find it more convenient to pause here at a primary cause, as elsewhere at a primordial centre, which we may ever identify with the primary cause. But is this truth, supposed to be final, capable of satisfying equally every mind? With this question, dear reader, I close my parenthesis.

To understand clearly the variable duration of the day at all points of the terrestrial surface, let us so place ourselves as to see our planet distinctly in front. I need hardly say that this invitation is not addressed to the visual organs of the body, but to the "mind's eye, Horatio." With the former, fixed as we are on the surface of the globe, we can only see the shadows of objects standing out in relief upon it, and still, with the sun at our back, can perceive but a comparatively insignificant portion. With the second, on the contrary, we may detach ourselves from the earth, may mount afar into space, may plant ourselves on some aËrial height, whence we may embrace, at a single glance, all the illuminated hemisphere of our globe: we shall have but a single shadow on the prospect,—that which our brightened planet casts behind it, and which, in four-and-twenty hours, traverses the entire surface of the globe, producing light wherever it passes.

Having completed our preparations, let us note what we perceive with our eye thus disjoined from our body,—an eye equally well adapted to fix every moving object, and to see at any distance bodies extremely small, or bodies extremely large. What a marvellous eye! And it is for us to develop its power, and freely to increase its range. What an arduous task!

The luminous envelope, the photosphere of the sun, simultaneously darts its rays in all directions, with an intensity which diminishes with the square of the distance.

Let us follow those which direct their course towards our planet.

So long as the rays do not come into collision, or strike against resistant matter, they neither warm nor enlighten. Confirming the Newtonian hypothesis of emission, they travel straight as arrows through the icy space, the shadowy ocean in which the waves of the terrestrial atmosphere are lost. But the moment they encounter a material obstacle, the rays partly penetrate it, and are partly thrown back, in such a manner as to form a series of undulations like those which the falling of a stone into a pond produces. As they recede from these repeated shocks, the rays come under that theory of undulation which Huygens promoted.[57]

Let us trace the rays of light back to their origin. These encounter first the globes nearest to the sun: the almost imperceptible asteroids, which, on account of the solar splendour, can scarcely be detected, and which, as yet, have received no baptismal names. Yonder beams illuminate other revolving globes,—Mercury, Venus, the Earth. If we here arrest our gaze, we are influenced by a vague and mournful recollection; the Earth was our place of sojourn at an epoch when thought, formerly shackled, had become free. It is thus that a seed, removed from the stem which nourished it, wanders afar to diffuse and perfect its species. Our planet, of an ochreous yellow, relieved with green and white, possesses no special privileges; it shares in the ponderated movements of the spheres; it is neither the largest, nor the smallest, nor the heaviest, nor the lightest, nor the nearest to, nor the farthest from, the sun. And shall Earth alone, of all the planets, nourish that kind of "thinking seed" which we name the human race? It seems improbable.

But let us return to the great orb of light. It illuminates exactly one half of our earth; the other half lies in shade. And as the earth rotates upon its own axis, every point of its surface is necessarily exposed to the action of the solar rays. This action varies in duration and intensity.

All this I was taught, when I was still at school on our revolving planet. I remember, too, as a lesson learned by heart, that, under the Equator, or, more exactly, in 0° 0´ latitude, as well as at the Poles, or under 90° latitude; the duration of the day is equal to that of the night, with this difference, that, while under the Equator, a day of twelve hours alternates invariably with a night of the same duration, at the Poles a day of six months succeeds continually to a night of six months. I also recollect that, at a given moment, namely, at the spring and autumn equinoxes, the duration of the day, over all the terrestrial surface, is equal to that of the night, just as under the Equator; and that, after these two epochs, under the intermediary latitudes, between the Equator and the Poles, the length of the days and their corresponding nights varies according to the seasons; that, in our northern hemisphere, after the spring equinox, the days increase while the nights diminish, to such an extent that, at the summer solstice,—21-22 June,—they attain their maximum of length (and the nights their minimum), the reverse taking place during the period that elapses between the autumn equinox and the winter solstice.

I remember that I learned these data when I was living rooted to or anchored upon the earth; but the explanation which my masters gave me was not so clear as I could have wished. Their considerations on the declensions of the sun, on the obliquity of the ecliptic, on the necessity of exactly reducing the earth to a simple point in relation to the distance of the stars, to the end that the phenomena occurring (rapportÉs) on parallel planes would be nearly identical with those observed from the centre of the globe, or from a point situated on its surface; all these fine things, which demanded a certain faculty of geometrical intuition, left a curious vagueness of idea upon my mind. I accepted them, under the influence of authority, as beyond discussion, but I was by no means satisfied whenever I wished to ascertain their foundation.

But now—in the regions of space—everything grows simple before the mind, in which, apparently, all my power of thought is concentrated.

Behold the illuminated atmosphere; it reminds me vividly of the disc of the full moon. Ah, what exquisite iris colours! They mark the meeting-points of the bright with the obscured hemisphere: a circular line carried through all these points would exactly separate day and night. On the one side, motion and life and glow; on the other, silence and shade and calm. This line moves, carrying with it in its movement day and night, the illuminated and the darkened hemisphere; it moves from east to west, so that the bright hemisphere and the shadowy one, whose union forms what may be called the photo-adumbrated sphere, revolves, in four-and-twenty hours, round an axis which coincides at this moment—the 21st day of March, according to the "terrestrial worms,"—with the axis of the earth rotating on itself in an inverse direction, that is to say, from west to east. Let us note this coincidence: it is remarkable; inasmuch as, at the equinoxes, the terrestrial equator divides exactly the illuminated and the obscured hemisphere into two equal parts, one of which is situated to the north, the other to the south, and their line of separation coincides with a meridian circle.

But I see another, and much slower movement, very clearly defined. The axis of rotation of the photo-adumbrated sphere does not remain parallel with the terrestrial axis of rotation; it retires from it little by little, so as to form with it an angle which attains its maximum at the summer solstice (21-22 June); afterwards, returning upon itself, it coincides anew with the terrestrial axis of rotation (the autumn equinox), to make an angle in the contrary direction, whose maximum, of the same value as the former, corresponds to the winter solstice (21-22 December). This movement, which is annual, complicates itself with the diurnal. It is rendered visible by the displacement of the polar shroud of snow: the portion which, at the moment of the spring equinox, belonged, in the northern hemisphere, to the obscured hemisphere, moves onward, as a result of the inclination of its axis, to become an integral part of the illuminated hemisphere; while, at the same time, the portion which, in the southern hemisphere, belonged to the illuminated hemisphere, moves onward to become an integral part of the darkened hemisphere. Owing to this displacement, the sun shows itself for six consecutive months above the horizon, for the North Pole; at the spring equinox it begins to rise, at the summer solstice it attains its maximum elevation, and from the summer solstice it begins to decline. Thus, then, we have in reality a day six months long, of which the morning and the evening are the two equinoxes, its noon the summer solstice.

In the same periods an exactly opposite order of things prevails in the southern hemisphere.

Everything, even to the minutest detail, is in this way very clearly explained. Two facts—like the touches of a painter's brush—suffice to impress the whole upon the mind, namely:—

That, first, one half of the terrestrial surface is constantly illuminated by the sun, while the other half remains in darkness;

That, secondly, the rotation of the earth upon its axis produces day and night, by carrying from east to west the illuminated hemisphere, always diametrically opposite to the darkened hemisphere.

This being thoroughly understood, let us place ourselves in the equatorial plane, so as to embrace at a single glance a quarter of the illuminated and a quarter of the darkened hemisphere. If the equator of the photo-adumbrated sphere perpetually coincided with the terrestrial equator,—if, in other words, the earth, in revolving round the sun, invariably occupied the plane of the Equator, which, when prolonged, would pass through the centre of the illuminating orb,—the diurnal rotation would not cease to divide equally the light and the darkness over the earth's surface, as is shown in Fig. 42 a, where S indicates the sun, EE the terrestrial equator, and N S the extremities (or North and South Poles) of the axis which divides the globe into an illuminated and a darkened half. This phenomenon of coincidence exists; but only for a very brief period, and is only repeated twice a year,—that is, at the equinoxes. At all other times, the equator of the photo-adumbrated sphere, in whose plane the orb of light is situated, passes sometimes above and sometimes below the terrestrial equator.

Fig. 42.—S, the Sun; EE, the Equator; N, North Pole; S, South Pole.

But this alternate movement of northern and southern declination has its limits; it stops at 23° 27' 30" on either side of the Equator; this, too, is the maximum of the distance which the imaginary axis of the photo-adumbrated sphere retires from the axis of terrestrial rotation; it is at the same time the value of the obliquity of the ecliptic, or of the inclined plane which the earth traverses in its annual movement of revolution.

Fig. 42 b, which represents the photo-adumbrated sphere at the summer solstice, will enable the reader to comprehend with the utmost facility the six months' day of the North Pole, coinciding with the six months' night of the South Pole; for the triangle N C D indicates the amount by which the illuminated moiety increases in the northern hemisphere between the spring equinox and the summer solstice, the amount being equal to that by which the adumbrated moiety overspreads in a contrary direction the South Pole in the southern hemisphere. The superfluous quantity of the photo-adumbrated sphere is nil at the apex of the two opposite triangles, or in the equinoctial region. And then, in effect, both day and night are always twelve hours long. Starting from the equinoctial line, we see how easy it is to calculate for each locality the variable dimensions of the arc which the sun, in its apparent course, traces above the horizon.

To see very distinctly the portion of the illuminated hemisphere, which, passing beyond the North Pole, forms a luminous course on the darkened moiety of our globe, I have but to place myself at midnight, on the 21st of June, in the prolongation of the terrestrial equator; in the same way, to see the corresponding portion of the darkened hemisphere, which advances beyond the South Pole to invade the illuminated, I have but to occupy at noon, on the 21st of June, a point of the same equatorial prolongation. Six months later, the same spectacle will be presented, inversely, on the 21st of December, in the southern hemisphere. See Fig. 43 a, where the pole N indicates the six months' day of the northern hemisphere (from the spring to the autumn equinox); while in Fig. 43 b, the pole S indicates the six months' night of the northern hemisphere (during the same period).

Fig. 43.—The Six Months' Day and Night.

Now, no effort of the imagination is required to understand why the inhabitants of the northern hemisphere enjoy summer while those of the southern are enduring winter; why it is "blossoming spring" to the former when it is "purple autumn" to the latter, and vice versÂ. Equally easy is it to comprehend why, after the equinox, day, or the duration of the sun above the horizon, gradually diminishes in one hemisphere and increases in the other; why, in summer, and in both hemispheres, the longest days alternate with the shortest nights, and in winter, the longest nights with the shortest days. It will not be more difficult to explain the cause of the prevailing cold in the polar zones, despite the prolonged sojourn of the sun above the horizon for a great part of the year. Observe how obliquely the solar rays are directed towards yonder shrouds of ice and snow: how can they warm them? They nearly all vanish into space. (See Fig. 42.)

Finally, there is not a phenomenon, even to that of dawn and twilight, which cannot, on these principles, be very fully and clearly explained. I have indicated, in a preceding paragraph, the rainbow-glories of colour noticeable on the line of demarcation between the illuminated and the darkened hemispheres. They are wanting where the rays of light strike vertically or nearly vertically. It is this circumstance which explains why, in the intertropical regions, the crepuscular phenomena are nearly null; why the sun, so to speak, sets and rises abruptly, like a taper which we extinguish or rekindle. These iris-gleams increase, on the other hand, in intensity, in proportion as we recede from tropical regions: the red touches the horizon, while the violet blends with the azure of the sky; between these two extremes, which are always very clearly marked, are arranged in less perceptible fashion, and in the order of refraction, the other colours of the rainbow.

What time and labour does it not require for the mind to disengage, to free itself from the fetters and incumbrances of sensorial appearances, the illusions of the senses, and to rise sufficiently high to seize at a glance all the dynamics of the world!

It is this faculty, however, which distinguishes the intellect from the imagination.

That he may abandon himself to the enjoyment of those pleasures which, like Dead Sea apples, crumble to ashes on his lips, the fool puts aside all mental toil, and disregards the shortness of his time,—ignores the brief period allowed for the development of the understanding. But, at least, let Imagination abstain from substituting its idle dreams for the assured results which can be only the reward of reason, conscientiousness, and labour! Unfortunately, here as elsewhere, it is vox clamantis, and we preach in the desert!


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page