CHAP. I. A CONCISE HISTORY OF THE INVENTION AND IMPROVEMENTS

Previous
CHAP. I. A CONCISE HISTORY OF THE INVENTION AND IMPROVEMENTS WHICH HAVE BEEN MADE UPON THE INSTRUMENT CALLED A MICROSCOPE.

It is generally supposed that microscopes[3] were invented about the year 1580, a period fruitful in discoveries; a time when the mind began to emancipate itself from those errors and prejudices by which it had been too long enslaved, to assert its rights, extend its powers, and follow the paths which lead to truth. The honor of the invention is claimed by the Italians and the Dutch; the name of the inventor, however, is lost; probably the discovery did not at first appear sufficiently important, to engage the attention of those men, who, by their reputation in science, were able to establish an opinion of its merit with the rest of the world, and hand down the name of the inventor to succeeding ages. Men of great literary abilities are too apt to despise the first dawnings of invention, not considering that all real knowledge is progressive, and that what they deem trifling, may be the first and necessary link to a new branch of science.

[3] The term microscope is derived from the Greek ????? little, and s??pe? to view; it is a dioptric instrument, by means of which objects invisible to the naked eye, or very minute, are by the assistance of lenses, or mirrors, represented exceeding large and very distinct. Edit.

The microscope extends the boundaries of the organs of vision; enables us to examine the structure of plants and animals; presents to the eye myriads of beings, of whose existence we had before formed no idea; opens to the curious an exhaustless source of information and pleasure; and furnishes the philosopher with an unlimited field of investigation. “It leads,” to use the words of an ingenious writer, “to the discovery of a thousand wonders in the works of his hand, who created ourselves, as well as the objects of our admiration; it improves the faculties, exalts the comprehension, and multiplies the inlets to happiness; is a new source of praise to him, to whom all we pay is nothing of what we owe; and, while it pleases the imagination with the unbounded treasures it offers to the view, it tends to make the whole life one continued act of admiration.”

It is not difficult to fix the period when the microscope first began to be generally known, and was used for the purpose of examining minute objects; for, though we are ignorant of the name of the first inventor, we are acquainted with the names of those who introduced it to the public, and engaged their attention to it, by exhibiting some of its wonderful effects. Zacharias Jansens and his son had made microscopes before the year 1619, for in that year the ingenious Cornelius Drebell brought one, which was made by them, with him into England, and shewed it to William Borel, and others. It is possible, this instrument of Drebell’s was not strictly what is now meant by a microscope, but was rather a kind of microscopic telescope,[4] something similar in principle to that lately described by Mr. Æpinus, in a letter to the Academy of Sciences at Petersburgh. It was formed of a copper tube six feet long and one inch diameter, supported by three brass pillars in the shape of dolphins; these were fixed to a base of ebony, on which the objects to be viewed by the microscope were also placed. In contradiction to this, Fontana, in a work which he published in 1646, says, that he had made microscopes in the year 1618: this may be also very true, without derogating from the merit of the Jansens, for we have many instances in our own times of more than one person having executed the same contrivance, nearly at the same time, without any communication from one to the other.[5] In 1685, Stelluti published a description of the parts of a bee, which he had examined with a microscope.

[4] Vide Borellum de vero Telescopii Inventore.

[5] In 1664 Dr. Power published his “Experimental Philosophy,” the first part of which consists of a variety of microscopical observations; and in the following year Dr. Hooke produced his “Micrographia,” illustrated with a number of elegant figures of the different objects. Edit.

If we consider the microscope as an instrument consisting of one lens only, it is not at all improbable that it was known to the ancients much sooner than the last century; nay, even in a degree to the Greeks and Romans: for it is certain, that spectacles were in use long before the above-mentioned period: now, as the glasses of these were made of different convexities, and consequently of different magnifying powers, it is natural to suppose, that smaller and more convex lenses were made, and applied to the examination of minute objects. In this sense, there is also some ground for thinking the ancients were not ignorant of the use of lenses, or at least of what approached nearly to, and might in some instances be substituted for them. The two principal reasons which support this opinion are, first, the minuteness of some ancient pieces of workmanship, which are to be met with in the cabinets of the curious: the parts of some of these are so small, that it does not appear at present how they could have been executed without the use of magnifying glasses, or of what use they could have been when executed, unless they were in possession of glasses to examine them with. A remarkable piece of this kind, a seal with very minute work, and which to the naked eye appears very confused and indistinct, but beautiful when examined with a proper lense, is described “Dans l’Histoire de l’Academie des Inscriptions,” tom. 1, p. 333. The second argument is founded on a great variety of passages, that are to be seen in the works of Jamblichus, Pliny, Plutarch, Seneca, Agellius, Pisidias, &c. From these passages it is evident that they were enabled by some instrument, or other means, not only to view distant objects, but also to magnify small ones; for, if this is not admitted, the passages appear absurd, and not capable of having a rational meaning applied to them. I shall only adduce a short passage from Pisidias, a christian writer of the seventh century, ?a e????ta ?? d?a d??pt??? s? ?epe??: “You see things future by a dioptrum:” now we know of nothing but a perspective glass or small telescope, whereby things at a distance may be seen as if they were near at hand, the circumstance on which the simile was founded. It is also clear, that they were acquainted with, and did make use of that kind of microscope, which is even at this day commonly sold in our streets by the Italian pedlars, namely, a glass bubble filled with water. Seneca plainly affirms it, LiterÆ, quamvis minutÆ et obscurÆ, per vitream pilam aqua plenam majores clarioresque cernuntur. Nat. QuÆst. lib. 1, cap. 7. “Letters, though minute and obscure, appear larger and clearer through a glass bubble filled with water.” Those who wish to see further evidence concerning the knowledge of the ancients in optics, may consult Smith’s Optics, Dr. Priestley’s History of Light and Colours, the Appendix to an Essay on the first Principles of Natural Philosophy by the Rev. Mr. Jones, Dr. Rogers’s Dissertation on the Knowledge of the Ancients, and the Rev. Mr. Dutens’s Enquiry into the Origin of the Discoveries attributed to the Moderns.[6]

[6] A new edition in French of this learned and valuable work, with many and useful notes, is just published. Edit.

The history of the microscope, like that of nations and arts, has had its brilliant periods, in which it has shone with uncommon splendor, and been cultivated with extraordinary ardour; these have been succeeded by intervals marked with no discovery, and in which the science seemed to fade away, or at least lie dormant, till some favourable circumstance, the discovery of a new object, or some new improvement in the instruments of observation, awakened the attention of the curious, and animated their researches. Thus, soon after the invention of the microscope, the field it presented to observation was cultivated by men of the first rank in science, who enriched almost every branch of natural history by the discoveries they made with this instrument: there is indeed scarce any object so inconsiderable, that has not something to invite the curious eye to examine it; nor is there any, which, when properly examined, will not amply repay the trouble of investigation.

I shall first speak of the SINGLE MICROSCOPE, not only as it is the most simple, but because, as we have already observed, it was invented and used long before the double or compound microscope. When the lenses of the single microscope are very convex, and consequently the magnifying power very great, the field of view is so small, and it is so difficult to adjust with accuracy their focal distance, that it requires some practice to render the use thereof familiar; at the same time, the smallness of the aperture to these lenses has been found injurious to the eyes of some observers: notwithstanding, however, these defects, the great magnifying power, as well as the distinct vision which is obtained by the use of a deep single lens, more than counterbalances every difficulty and disadvantage. It was with this instrument that Leeuwenhoek and Swammerdam, Lyonet and Ellis examined the minima of nature, laid open some of her hidden recesses, and by their example stimulated others to the same pursuit.

The construction of the single microscope is so simple, that it is susceptible of but little improvement, and has therefore undergone but few alterations; and these have been chiefly confined to the mode of mounting it, or the additions to its apparatus. The greatest improvement this instrument has received, was made by Dr. LieberkÜhn, about the year 1740; it consisted in placing the small lens in the center of a highly polished concave speculum of silver, by which means he was enabled to reflect a strong light upon the upper surface of an object, and thus examine it with great ease and pleasure. Before this contrivance, it was almost impossible to examine small opake objects with any degree of exactness and satisfaction; for the dark side of the object being next the eye, and also overshadowed by the proximity of the instrument, its appearance was necessarily obscure and indistinct.

Dr. LieberkÜhn adapted a microscope to every object; it consisted of a short brass tube, at the eye end of which a concave silver speculum was fixed, and in the center of the speculum a magnifying lens: the object was placed in the middle of the tube, and had a small adjustment to regulate it to the focus; at the other end of the tube there was a plano convex lens, to condense and render more uniform the light which was reflected from the mirror. But all these pains were not bestowed upon trifling objects; his were generally the most curious anatomical preparations, a few of which, with their microscopes, are, I believe, deposited in the British Museum. It will be proper, in this place, to give some account of Mr. Leeuwenhoek’s microscopes, which were rendered famous throughout all Europe, on account of the numerous discoveries he had made with them, as well as from his afterwards bequeathing a part of them to the Royal Society. The microscopes he used were all single, and fitted up in a convenient simple manner; each of them consisted of a very small double convex lens, let into a socket between two plates rivetted together, and pierced with a small hole; the object was placed on a silver point or needle, which, by means of screws adapted for that purpose, might be turned about, raised or depressed at pleasure, and thus be brought nearer to, or be removed farther from the glass, as the eye of the observer, the nature of the object, and the convenient examination of its parts required. Mr. Leeuwenhoek fixed his objects, if they were solid, to the foregoing point with glue; if they were fluid, he fitted them on a little plate of talc, or exceeding thin blown glass, which he afterwards glued to the needle, in the same manner as his other objects. The glasses were all exceeding clear, and of different magnifying powers, which were proportioned to the nature of the object, and the parts designed to be examined. But none of those, which were presented to the Royal Society, magnify so much as the glass globules, which have been used in other microscopes. He had observed, in a letter of his to the Royal Society, that from upwards of forty years experience, he found that the most considerable discoveries were to be made with such glasses, as magnifying but moderately, exhibited the object with the most perfect brightness and distinctness. Each instrument was devoted to one or two objects: hence he had always some hundreds by him.[7] There is some reason for supposing, that Leeuwenhoek was acquainted with a mode of viewing opake objects, similar to that invented by Dr. LieberkÜhn.[8]

[7] Philosophical Transactions, No. 980, No. 458.

[8] Priestley’s History of Optics, p. 220.

About the year 1665, small glass globules began to be occasionally applied to the single microscope, instead of convex lenses. By these globules, an immense magnifying power is obtained. The invention of them has been generally attributed to M. Hartsoeker; it appears, however, to me, that we are indebted to the celebrated Dr. Hooke for this discovery; for he described the manner of making them in the preface to his “Micrographia,” which was published in the year 1665. Now the first account we have of any microscopical discovery by M. Hartsoeker, was that of the spermatic animalculÆ, made by him when he was eighteen years old; which brings us down to the year 1674, long after Dr. Hooke’s publication.

As these glass globules have been very useful in the hands of experienced observers, I shall lay before my readers the different modes which have been described for making them, that the reader may be enabled thereby to ascertain the reality of the discoveries that have been said to be made with them.

Take a small rod[9] of the clearest and cleanest glass you can procure, free, if possible from blebs, veins, or sandy particles; then by melting it in a lamp with spirit of wine, or the purest and clearest sallad oil, draw it out into exceeding fine and small threads; take a small piece of these threads, and melt the end thereof in the same flame, till you perceive it run into a small drop, or globule, of the desired size; let this globule cool, then fix it upon a thin plate of brass or silver, so that the middle of it may be directly over the center of a very small hole made in this plate, turning it till it is fixed by the before-mentioned thread of glass. When the plate is properly fixed to your microscope, and the object adjusted to the focal distance of the globule, you will perceive the object distinctly and immensely magnified. “By these means,” says Dr. Hooke, “I have been able to distinguish the particles of bodies not only a million times smaller than a visible point, but even to make those visible whereof a million of millions would hardly make up the bulk of the smallest visible grain of sand; so prodigiously do these exceeding small globules enlarge our prospect into the more hidden recesses of nature.”

[9] Lectures and Collections by Dr. Hooke.

Mr. Butterfield, in making of the globules, used a lamp with spirit of wine; but instead of a cotton wick, he used fine silver wire, doubled up and down like a skain of thread.[10] He prepared his glass by beating it to powder, and washing it very clean; he then took a little of this glass upon the sharp point of a silver needle, wetted with spittle, and held it in the flame, turning it about till a glass ball was formed; then taking it from the flame, he afterwards cleaned it with soft leather, and set it in a brass cell.

[10] Philos. Trans. No. 141.

No person has carried the use of these globules so far as Father Di Torre, of Naples, nor been so dexterous in the execution of them; and if others have not been able to follow him in the same line, it may be fairly attributed to a want of that delicacy of touch for adjusting the objects to their focus, and that acuteness of vision which can only be acquired by long practice. Di Torre has also described, more minutely than any other author, the mode of executing these globules, which, as it throws much light upon the preceding description by Dr. Hooke, will not, it is presumed, be unacceptable to the reader.

Three things are necessary for forming of these globules: 1. A lamp and bellows, such as are used by the glass-blowers. 2. A piece of perfect tripoli. 3. A variety of small glass rods. When the flame of the lamp is blown in an horizontal direction, it will be found to consist of two parts; from the base to about two thirds of its length, it is of a white colour; beyond this, it is transparent and colourless. It is this transparent part which is to be used for melting the glass, because by this it will not be in the least sullied; but it will be immediately soiled, if it touch the white part of the flame. The part of the glass which is presented to the flame, ought to be exceeding clean, and great care should be taken that it be not touched by the fingers. If the glass rod has contracted any spots, it must either be thrown away, or the parts that are spotted must be cut off.

The piece of tripoli which is to be used in forming the globules, should be flat on one side, and so large that it may be handled conveniently, and protect the fingers from the flame. A piece four or five inches long, and three or four inches thick, will answer very well. The best tripoli for this purpose is of a white colour, with a fine grain, heavy and compact, and which, after it has been calcined, is of a red colour. This kind resists the fire best, is not apt to break when calcined, and the melted glass does not adhere to it. To calcine this tripoli, cover it well all round with charcoal nearly red hot, leaving it thus till the charcoal is quite cold; it may then be taken out. Let several hemispherical cavities be made on the flat side of the tripoli; they should be of different sizes, nicely polished, and neatly rounded at the edges, in order to facilitate the entrance of the flame. The large globules are to be placed in the large cavities, and the minuter ones, in the small cavities. The holes in the tripoli must never be touched with the finger. If it be necessary to clean them, it should be done with white paper; the larger globules may be cleaned with wash leather. The glass rods should be of various sizes, as of 1/10th, 1/20th, 1/30th of an inch in diameter, as clean and free from specks and bubbles as possible.

TO MAKE SMALL GLASS MICROSCOPIC GLOBULES.

Take two rods of glass, one in each hand, place their extremities close to each other, and in the purest part of the flame; when you perceive the ends to be fused, separate them from each other; the heated glass following each rod, will be finer, in proportion to the length it is drawn to, and the smallness of the rod; in this manner you may procure threads of glass of any degree of fineness. Direct the flame to the middle of the thread, and it will be instantly divided into two parts. When one of the threads is perfectly cool, place it at the extremity of the flame, by which it will be rendered round; and, if the thread of glass be very fine, an exceeding small globule will be formed. This thread may now be broke off from the rod, and a new one may be again drawn out as before, by the assistance of the other glass rod.

The small ball is now to be separated from the thread of glass; this is easily effected by the sharp edge of a piece of flint. The ball should be placed in a groove of paper, and another piece of paper be held over it, to prevent the ball from flying about and being lost. A quantity of globules ought to be prepared in this manner; they are then to be cleaned, and afterwards placed in the cavities of the tripoli, by means of a delicate pair of nippers. The globules are now to be melted a second time, in order to render them completely spherical; for this purpose, bring one of the cavities near the extremity of the flame, directing this towards the tripoli, which must be first heated; the cavity is then to be lowered, so that the flame may touch the glass, which, when it is red hot, will assume a perfect globular form; it must then be removed from the flame, and laid by; when cold, it should be cleaned, by rubbing between two pieces of white paper. Let it now be set in a brass cap, to try whether the figure be perfect. If the object be not well defined, the globule must be thrown away. Though, if it be large, it may be exposed two or three times to the flame. When a large globule is forming, it should be gently agitated by shaking the tripoli, which will prevent its becoming flat on one side. By attending to these directions, the greater part of the globules will be round and fit for use. In damp weather, notwithstanding every precaution, it will often happen, that out of forty globules, four or five only will be fit for use.

Mr. Stephen Gray, of the Charter-House, having observed some irregular particles within a glass globule, and finding that they appeared distinct and prodigiously magnified when held close to his eye, concluded, that if he placed a globule of water, in which there were any particles more opake than the water, near his eye, he should see those particles distinctly and highly magnified. This idea, when realized, far exceeded his expectation. His method was, to take on a pin a small portion of water which he knew had in it some minute animalculÆ; this he laid on the end of a small piece of brass wire, till there was formed somewhat more than an hemisphere of water; on applying it then to the eye, he found the animalculÆ most enormously magnified; for those which were scarce discernible with his glass globules, with this appeared as large as ordinary sized peas. They cannot be seen in day-time, except the room be darkened, but are seen to the greatest advantage by candle-light. Montucla observes, that when any objects are inclosed within this transparent globule, the hinder part of it acts like a concave mirror, provided they be situated between that surface and the focus; and that by these means they are magnified three times and an half more than they would be in the usual way. An extempore microscope may be formed, by taking up a small drop of water on the point of a pin, and placing it over a fine hole made in a piece of metal; but as the refractive power of water is less than that of glass, these globules do not magnify so much as those of the same size which are made of glass: this was also contrived by Mr. Gray. The same ingenious author invented another water microscope, consisting of two drops of water, separated in part by a thin brass plate, but touching near the center; which were thus rendered equivalent to a double convex lens of unequal convexities.

Dr. Hooke describes a method of using the single microscope, which seems to have a great analogy to the foregoing methods of Mr. Gray. “If you are desirous,” says he, “of obtaining a microscope with one single refraction, and consequently capable of procuring the greatest clearness and brightness any one kind of microscope is susceptible of; spread a little of the fluid you intend to examine, on a glass plate, bring this under one of your microscopic globules, then move it gently upwards, till the fluid touch the globule, to which it will soon adhere, and that so firmly, as to bear being moved a little backwards or forwards. By looking through the globule, you will then have a perfect view of the animalculÆ in the drop.”[11]

[11] Hooke’s Lectures and Conjectures, p. 98.

Having laid before the reader the principal improvements that have been suggested, or made in the single microscope, it remains only to point out those instruments of this kind, which, from the mode in which they are fitted up, seem best adapted for general use; the peculiar advantages of which, as well as the manner of using them, will be described in the third chapter of this work.

Fig. 1. Plate VI. A botanical microscope, contrived by Dr. Withering.

Fig. 2. Plate VI. A botanical microscope, by Mr. B. Martin, being the most universal pocket microscope.

Fig. 3. Plate VI, represents that which was used by M. Lyonnet for dissecting the cossus.

Fig. 5. Plate VI. The tooth and pinion microscope, which is now generally substituted in the room of Wilson’s. Fig. 1. Plate II. B.

Fig. 1. Plate VII. B. The aquatic microscope used by Mr. Ellis for investigating the nature of coralline, and recommended to botanists by Mr. Curtis, in his valuable publication, the “Flora Londinensis.”

Fig. 7. Plate VIII. A botanical magnifier, or hand megalascope, which by the different combinations of its three lenses produces seven different magnifying powers; when the three are used together, they are turned in, and the object viewed through the apertures in the sides.

Fig. 8. Plate VIII. A botanical magnifier, having one large lens and two small ones, but not admitting of more than three powers.

A compound microscope, as it consists of two, three, or more glasses, is more easily varied, and is susceptible of greater changes in its construction, than the single microscope. The number of the lenses, of which it is formed, may be increased or diminished, their respective positions may be varied, and the form in which they are mounted be altered almost ad infinitum. But among these varieties, some will be found more deserving of attention than others; we shall here treat of these only.

The three first compound microscopes deserving of notice, are those of Dr. Hooke, Eustachio Divinis, and Philip Bonnani. Dr. Hooke gives an account of his in the preface to his Micrographia, which has been already cited; it was about three inches in diameter, seven long, and furnished with four draw-out tubes, by which it might be lengthened as occasion required: it had three glasses—a small object glass, a middle glass, and a deep eye glass. Dr. Hooke used all the glasses when he wanted to take in a considerable part of an object at once, as by the middle glass a number of radiating pencils were conveyed to the eye, which would otherwise have been lost: but when he wanted to examine with accuracy the small parts of any substance, he took out the middle glass, and only made use of the eye and object lenses; for the fewer the refractions are, the clearer and more bright the object appears.

An account of Eustachio Divinis’s microscope was read at the Royal Society, in 1668.[12] It consisted of an object lens, a middle glass, and two eye glasses, which were plano convex lenses, and were placed so that they touched each other in the center of their convex surfaces; by which means the glass takes in more of an object, the field is larger, the extremities of it less curved, and the magnifying power greater. The tube, in which the glasses were inclosed, was as large as a man’s leg, and the eye glasses as broad as the palm of the hand. It had four several lengths; when shut up, it was sixteen inches long, and magnified the diameter of an object forty-one times; at the second length, ninety times; at the third length, one hundred and eleven times; at the fourth length, one hundred and forty-three times. It does not appear that E. Divinis varied the object lenses.

[12] Philos. Trans. No. 42.

Philip Bonnani published an account of his two microscopes in 1698;[13] both were compound; the first was similar to that which Mr. Martin published as new, in his Micrographia Nova,[14] in 1742. His second was like the former, composed of three glasses, one for the eye, a middle glass, and an object lens; they were mounted in a cylindrical tube, which was placed in an horizontal position; behind the stage was a small tube, with a convex lens at each end; beyond this was a lamp; the whole capable of various adjustments, and regulated by a pinion and rack; the small tube was used to condense the light on the object, and spread it uniformly over it according to its nature, and the magnifying power that was used.

[13] Bonnani Observationes circa Viventia.

[14] Micrographia Nova, by B. Martin, 4to.

If the reader attentively consider the construction of the foregoing microscopes, and compare them with more modern ones, he will be led to think with me, that the compound microscope has received very little improvement since the time of Bonnani. Taken separately, the foregoing constructions are equal to some of the most famed modern microscopes. If their advantages be combined, they are far superior to that of M. Dellebarre, notwithstanding the pompous eulogium affixed thereto by Mess. De L’Academie Royale des Sciences.[15]

[15] Memoires sur les Differences de la Construction et des Effets du Microscope, de M. L. F. Dellebarre, 1777.

From this period, to the year 1736, the microscope appears not to have received any considerable alteration, but the science itself to have been at a stand. The improvements which were making in the reflecting telescope, naturally led those who had considered the subject, to expect a similar advantage would accrue to microscopes on the same principles: accordingly we find two plans of this kind; the first was that of Dr. Robert Barker. This instrument is entirely the same as the reflecting telescope, excepting the distance of the two speculums, which is lengthened, in order to adapt it to those pencils of rays which enter the telescope diverging; whereas, from very distant objects, they come in a direction nearly parallel. But this was soon laid aside, not only as it was more difficult to manage, but also because it was unfit for any but very small or transparent objects: for the object being between the speculum and the image, would, if it were large and opake, prevent a due reflection of light on the object.

The second was contrived by Dr. Smith.[16] In this there were two reflecting mirrors, one concave and the other convex; the image was viewed by a lens. This microscope, though far from being executed in the best manner, performed, says Dr. Smith, very well, so that he did not doubt but that it would have excelled others, if it had been properly finished.

[16] Dr. Smith’s Optics, Remarks, p. 94.

As some years are more favourable to the fruits of the earth, so also some periods are more favourable to particular sciences, being rich in discovery, and cultivated with ardor. Thus, in the year 1738, Dr. LieberkÜhn’s invention of the solar microscope was communicated to the public: the vast magnifying power which was obtained by this instrument, the colossal grandeur with which it exhibited the minima of nature, the pleasure which arose from being able to display the same object to a number of observers at the same time, by affording a new source of rational amusement, increased the number of microscopic observers, who were further stimulated to the same pursuits by Mr. Trembley’s famous discovery of the polype: the wonderful properties of this little animal, together with the works of Mr. Trembley, Baker, and my father, revived the reputation of this instrument.[17]

[17] Trembley Memoires sur les Polypes. Baker’s Microscope made Easy; Attempt towards an History of the Polype; Employment for the Microscope. Adams’s Micrographia Illustrata. Joblot’s Observations d’Histoire Naturelle.

Every optician now exercised his talents in improving, as he called it, the microscope; in other words, in varying its construction, and rendering it different from that sold by his neighbour. Their principal object seemed to be, only to subdivide the instrument, and make it lie in as small a compass as possible; by which means, they not only rendered it complex and troublesome in use, but lost sight also of the extensive field, great light, and other excellent properties of the more ancient instruments; and, in some measure, shut themselves out from further improvements on the microscope. Every mechanical instrument is susceptible of almost infinite combinations and changes, which are attended with their relative advantages and disadvantages: thus, what is gained in power, is lost in time; “he that loves to be confined to a small house, must lose the benefit of air and exercise.”

The microscope, nearly at the same period, gave rise to M. Buffon’s famous system of organic molecules, and M. Needham’s incomprehensible ideas concerning a vegetable force and the vitality of matter. M. Buffon has dressed up his system with all the charms of eloquence, presenting it to the mind in the most agreeable and lively colours, exerting the depths of erudition in the most interesting and seducing manner to establish his hypothesis, making us almost ready to adopt it against the dictates of reason, and the evidence of facts. But whether this great man was misled by the warmth of his imagination, his attachment to a favourite system, or the use of imperfect instruments, it appears but too evident, that he was not acquainted with the objects whose nature he attempted to investigate; and it is probable, that he never saw[18] those which he supposed he was describing, continually confounding the animalculÆ produced from the putrifying decomposition of animal substances, with the spermatic animalculÆ, although they are two kinds of beings, differing in form and nature; so that the beautiful fabric attempted to be raised on his hypothesis, vanishes before the light of truth and well conducted experiments.

[18] Porro Buffonius, ut cum illustris viri venia dicam, omnino non videtur vermiculos seminales vidisse. Diuturnitas enim vitÆ quam suis corpusculis tribuit, ostendit non esse nostra animalcula (id est, spermatica) quibus brevis et paucarum horarum vita est. Haller Physiol. tom. 7.

After this period, the mind, either satisfied with the discoveries already made, which will be particularly described hereafter, or tired by its own exertions, sought for repose in other pursuits; so that for several years this instrument was again, in some measure, laid aside. In 1770, Dr. Hill[19] published a treatise, in which he endeavoured to explain the construction of timber by the microscope, and shew the number, the nature, and office of its several parts, their various arrangements and proportions in the different kinds; and point out a way of judging, from the structure of trees, the uses they will best serve in the affairs of life. So important a subject soon revived the ardor for microscopic pursuits, which seems to have been increasing ever since. About the same time, my father contrived an instrument for cutting the transverse sections of wood, in order that the texture thereof might be rendered more visible in the microscope, and consequently be better understood; this instrument was afterwards improved by Mr. Cumming. Another instrument for the same purpose, more certain in its effects, and more easily managed, is represented in Fig. 1. Plate IX; and will be described in one of the following chapters. Dr. Hill and Mr. Custance now endeavoured to bring back the microscope nearer to the old standard, to increase the field by the multiplication of the eye glasses, and to augment the light on the object, by condensing lenses; and in this they happily succeeded: Mr. Custance was unrivalled in his dexterity in preparing, and accuracy in cutting thin transverse sections of wood.

[19] Dr. Hill on the Construction of Timber.

In 1771, my father published a fourth edition of his Micrographia, in which he described the principal inventions then in use; particularly a contrivance of his own, for applying the solar microscope to the camera obscura, and illuminating it at night by a lamp, by which means a picture of microscopic objects might be exhibited in winter evenings.

It appears[20] from the testimony of M. Æpinus, that Dr. LieberkÜhn had considerably improved the solar microscope, by adapting it to view opake objects. This contrivance was by some means lost. The knowledge, however, that such an effect had been produced, led Æpinus to attend to the subject himself, in which he in some measure succeeded, and would, no doubt, have brought it to perfection, if he had increased the size of his illuminating mirror. Some further improvements were made on this instrument by M. Ziehr; but the most perfect instrument of the kind, is that of Mr. B. Martin, who published an account of it in the year 1774.[21] The common solar microscope does not shew the surface of any object, whereas the opake solar microscope not only magnifies the object, but exhibits on a screen an expanded picture of its surface, with all its colours, in a most beautiful manner.

[20] Priestley’s Hist. of Optics, p. 743.

[21] Martin’s Description and Use of an Opake Solar Microscope. The merits and ingenuity in constructing and improving microscopes by this learned optician, seem to be unnoticed by our late author. The following pamphlets by Mr. B. Martin are, among others of his valuable publications, instances of his indefatigable industry. Description and Use of a Pocket Reflecting Microscope, with a Micrometer; 1739. Micrographia Nova, or a New Treatise on the Microscope; 1742. Description of a New Universal Microscope; a Postscript to his New Elements of Optics; 1759. Description of several Sorts of Microscopes, and the Use of the Reflecting Telescope, as an universal Perspective for viewing every Sort of Objects. Optical Essays; 1770. A Description and Use of a Proportional Camera Obscura, with a Solar Microscope adapted thereto, annexed to his Description of the Opake Solar Microscope above-mentioned. Description of a New Universal Microscope; 1776. Description and Use of a Graphical Perspective and Microscope; 1771. Microscopium Polydynamicum, or a New Construction of a Microscope; 1771. An Essay on the genuine Construction of a standard Microscope and Telescope; 1776. Microscopium Pantometricum, or a new Construction of a Micrometer adapted to the Microscope. The most essential articles in the above works will be hereafter described. Edit.

About the year 1774, I invented the improved lucernal microscope; this instrument does not in the least fatigue the eye: it shews all opake objects in a most beautiful manner; and transparent objects may be examined by it in various ways, so that no part of an object is left unexplored; and the outlines of all may be taken with ease, even by those who are most unskilled in drawing.

M. L. F. Dellebarre published an account of his microscope in the year 1777. It does not appear from this, that it was superior in any respect to those that were made in England, but was inferior in others; for those published by my father in 1771 possessed all the advantages of Dellebarre’s in a higher degree, except that of changing the eye glasses.

In 1784, M. Æpinus published a description of what he termed new-invented microscopes, in a letter to the Academy of Sciences at Petersburgh;[22] they are nothing more than an application of the achromatic perspective to microscopic purposes. Now it has been long known to every one who is the least versed in optics, that any telescope is easily converted into a microscope, by removing the object glass to a greater distance from the eye glasses; and that the distance of the image varies with the distance of the object from the focus, and is magnified more as its distance from the object is greater: the same telescope may, therefore be successively turned into a microscope, with different magnifying powers. Mr. Martin had also shewn, in his description and use of a polydynamic microscope, how easily the small achromatic perspective may be applied to this purpose. Botanists might find some advantage in attending to this instrument; it would assist them in discovering small plants at a distance, and thus often save them from the thorns of the hedge, and the dirt of a ditch.

[22] Description des Nouveaux Microscopes inventes par M. Æpinus.

Fig. 1. Plate III, represents the improved lucernal microscope.

Fig. 1. Plate IV. The improved compound and single microscope.

Fig. 2. Plate IV. The best universal compound microscope.

Fig. 3. Plate IV, is what is usually called Culpeper’s, or the common three pillared compound microscope.

Fig. 1. Plate V, represents Martin’s solar opake microscope.

Fig. 4. Plate VI, is a picture of the common solar microscope.

Fig. 1. Plate VII. A, is Cuff’s common compound microscope.

Fig. 3. Plate VIII. Martin’s new microscopic telescope, or convenient portable apparatus for a traveller.

We cannot conclude this chapter better than with the following observations on the microscope. We are indebted to it for many discoveries in natural history; but let us not suppose that the Creator intended to hide these objects from our observation. It is true, this instrument discovers to us as it were a new creation, new series of animals, new forests of vegetables; but he who gave being to these, gave us an understanding capable of inventing means to assist our organs in the discovery of their hidden beauties. He gave us eyes adapted to enlarge our ideas, and capable of comprehending a universe at one view, and consequently incapable of discerning those minute beings, with which he has peopled every atom of the universe. But then he gave properties and qualities to matter of a particular kind, by which it would procure us this advantage, and at the same time elevated the understanding from one degree of knowledge to another, till it was able to discover these assistances for our sight.

It is thus we should consider the discoveries made by those instruments, which have received their birth from an exertion of our faculties. It is to the same power, who created the objects of our admiration, that we are ultimately to refer the means of discovering them. Let no one, therefore, accuse us of prying deeper into the wonders of nature, than was intended by the great author of the universe. There is nothing we discover by their assistance, which is not a fresh source of praise; and it does not appear that our faculties can be better employed, than in finding means to investigate the works of God.

From a partial consideration of these things, we are very apt to criticise what we ought to admire; to look upon as useless what perhaps we should own to be of infinite advantage to us, did we see a little farther; to be peevish where we ought to give thanks; and at the same time to ridicule those who employ their time and thoughts in examining what we were, i. e. some of us most assuredly were created and appointed to study. In short, we are too apt to treat the Almighty worse than a rational man would treat a good mechanic, whose works he would either thoroughly examine, or be ashamed to find any fault with them. This is the effect of a partial consideration of nature; but he who has candor of mind, and leisure to look farther, will be inclined to cry out:

How wond’rous is this scene! where all is form’d
With number, weight, and measure! all design’d
For some great end! where not alone the plant
Of stately growth; the herb of glorious hue,
Or food-full substance! not the laboring steed,
The herd, and flock that feed us; not the mine
That yields us stores for elegance and use;
The sea that loads our table, and conveys
The wanderer man from clime to clime, with all
Those rolling spheres, that from on high shed down
Their kindly influence; not these alone,
Which strike ev’n eyes incurious, but each moss,
Each shell, each crawling insect, holds a rank
Important in the plan of Him, who fram’d
This scale of beings; holds a rank, which lost,
Would break the chain, and leave behind a gap
Which nature’s self would rue. Almighty Being,
Cause and support of all things, can I view
These objects of my wonder; can I feel
These fine sensations, and not think of thee?
Thou who dost thro’ th’ eternal round of time,
Dost thro’ th’ immensity of space exist
Alone, shalt thou alone excluded be
From this thy universe? Shall feeble man
Think it beneath his proud philosophy
To call for thy assistance, and pretend
To frame a world, who cannot frame a clod?—
Not to know thee, is not to know ourselves—
Is to know nothing—nothing worth the care
Of man’s exalted spirit:—all becomes,
Without thy ray divine, one dreary gloom,
Where lurk the monsters of phantastic brains,
Order bereft of thought, uncaus’d effects,
Fate freely acting, and unerring chance.
Where meanless matter to a chaos sinks,
Or something lower still, for without thee
It crumbles into atoms void of force,
Void of resistance—it eludes our thought.
Where laws eternal to the varying code
Of self-love dwindle. Interest, passion, whim,
Take place of right and wrong, the golden chain
Of beings melts away, and the mind’s eye
Sees nothing but the present. All beyond
Is visionary guess—is dream—is death.[23]

[23] Stillingfleet’s Miscellaneous Tracts.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page