Fig. 25.—Cross Section of Columbus, Ga., Power-station. Larger cross section (251 kB) Water-wheels must be located at some elevation between that of head- and tail-water. With horizontal shafts and direct-connected wheels and generators the main floor of the station is brought below the level of the wheel centres. This is much the most general type of construction, and was followed in the Massena, Sault Ste. Marie, CaÑon Ferry, Colgate, Electra, Santa Ana, and many other well-known water-power stations. If horizontal shafts are employed for wheels and generators with belt or rope connections between them the floor of the generator room may be elevated a number of feet above the wheels. This difference of elevation is usually provided for either by upper and lower parts of the same room, or by separate rooms one above the other and a floor between them. A two-story construction of this latter sort was frequently adopted Fig. 26.—Cross Section of Combined Steam- and Water-power Station at Richmond, Va. Fig. 27.—Cross Section of Wheel House at Buchanan, Mich. Larger cross section (140 kB) The most desirable method of driving generators with vertical wheels, where the expense is not too great, is the direct mounting of each generator Fig. 28.—Longitudinal Section of Buchanan, Mich., Power-house. Larger longitudinal section (146 kB) The most notable examples of direct-connected generators and vertical turbines is that at Niagara Falls, where twenty-one generators of 5,000 horse-power each are mounted at the tops of as many vertical wheel shafts in two of the four stations. Each vertical shaft in the Niagara stations is driven at 250 revolutions per minute by a pair of turbines, one above the other. The maximum head between the water in the Niagara canal and that in the tunnel which forms the tail-race is 161 feet. On ten shafts the centres of the wheel cases are 136 feet below the level of water in the canal, and no draft tubes are used. Fig. 29.—Section of Power-house No. 2 at Niagara Falls. Larger section (242 kB) The eleven pairs of wheels at the second Niagara power-house have their centre line 128.25 feet below the canal level and a draft tube for each pair of wheels extends to a point below the tail-water level. It is entirely practicable to use more than a single pair of turbines on the same vertical shaft, as is shown at the Hagneck station on the Jura, in Fig. 30.—Interior of Power-house, Buchanan, Mich. For horizontal, direct-connected turbine wheels and generators the nearly uniform practice is to locate the generators in a single row from one end of a station to the other, and this brings the turbines into a parallel row. On this plan the shaft of each connected generator and its group of turbines sets at right angles to the longer sides of a station and approximately parallel with the direction in which water flows to the wheels. The typical water-power station with direct-connected units is thus a rather long, narrow building into which water enters on one side through penstocks and leaves on the other through tail-races. Such stations usually set with one of the longer sides parallel to the river into which the tail-water passes and between this river and the canal or pipe line. At Massena the electric station occupies the position of a dam between the end of the power canal and the Grass River, being about 150 feet wide and 550 feet long. Canal water entering this station passes through its wheels to the river under a head of about 50 feet. A similar construction was followed at Sault Ste. Marie, where the power-station separates the end of the canal from the St. Mary’s River. This station is 100 feet wide, 1,368 feet long, and is to contain 80 sets of horizontal wheels, each set being connected to its own generator, and through these wheels the canal water passes under a head of approximately 20 feet. Ten generators are placed in line at the CaÑon Ferry station which is 225 by 50 feet inside, and each generator is driven by a pair of horizontal wheels under a head of 30 feet. This station sets between a short canal and the Missouri River, near one end of the dam. Passing from water-heads of less than 50 to those of several hundred or even more than 1,000 feet, the general type of station building remains about the same, but there is an important change in the arrangement of direct-connected wheels and generators. With these high heads of water, wheels of the impulse type, to which the water is supplied in the form of jets from nozzles, are employed. These jets pass to the wheels in planes at right angles to their shafts, instead of flowing in lines parallel to these shafts like water to pressure turbines. The shafts of impulse wheels and their direct-connected generators are consequently arranged parallel with the longer instead of Fig. 31.—Plan of Generating Station near Cedar Lake for City of Seattle, Wash. Larger plan (89 kB) Fig. 32.—Foundation of Power-station at Spier Falls. Fig. 33.—Plan of Power-station at Great Falls. Larger plan (207 kB) At Electra station on the Mokelumne River five pairs of impulse wheels are direct-connected to five generators, each unit having its shaft diagonal with the walls of the building, and pipes deliver water to the wheels under a head of 1,450 feet. The ground plan of the generator room at this plant is 40 by 208 feet. The power-station on Santa Ana River, whence energy is transmitted 83 miles to Los Angeles, measures 127 feet long and 36 feet wide inside, and contains four generating units Fig. 34.—Power-house at Red Bridge on Chicopee River. Both of the first Niagara plants, with vertical wheels far below the stations in the pits, are long and narrow and have their generators in a single row. The later of these two stations has a ground area of approximately 72 by 496 feet outside, and contains eleven generators all in line. From these examples it may be seen that the prevailing type of electric water-power station, whether designed for horizontal or vertical wheels of either the pressure or impulse type, is wide enough for only a single row of generators and wheels, and has sufficient length to accommodate the required number of units. A few modern stations that depart from this general plan will be found, as that at Great Falls, on the Presumpscot River, whence electrical supply for Portland, Me., is drawn. This station sets about forty feet in front of the forebay end of the dam, and two penstocks enter the rear wall, while the other two enter one each through two of the remaining opposite sides. Of the four generators, with their direct-connected Fig. 35.—Plan and Elevation of Red Bridge Station on the Chicopee River. Larger plan and elevation (222 kB) Modern electric stations driven by water-power are usually but one story in height and are clear inside from floor to roof, save for cranes and roof trusses. This construction may be seen in the Niagara, Spier Falls, CaÑon Ferry, Colgate, Electra, Santa Ana River and many other notable plants. In spite of this one-story style of construction, the electric stations reach fair elevations because of the necessity for head room to operate cranes in placing and removing generators. At Garvin’s Falls, on the Merrimac River, the electric station contains generators of 650 kilowatts each and the distance from floor to the lower cords of roof trusses is 27 feet. In the station at Red Bridge, on the Chicopee River, where generators are of 1,000 kilowatts capacity each, the distance between floor Electric stations driven by water-power are now constructed almost entirely of materials that will not burn—that is, stone, brick, tile, concrete, cement, iron, and steel. Stone masonry laid with cement mortar or concrete masonry is very generally employed for all those parts of the foundations that come in contact with the tail-water. For sub-foundations bedrock is very desirable, but where this cannot be reached piles are driven closely and their tops covered with several feet of cement concrete as a bedding for the stone foundation. Where stone is plenty or bricks hard to obtain, the entire walls of a water-power station are frequently laid entirely with stone in concrete mortar. If bricks can readily be had they are more commonly used than stone for station walls above the foundations. Concrete formed into a monolithic mass is a favorite type of construction for the foundations, walls and floors of water-power plants in Southern California. Cement and concrete are much used for station floors in all parts of the country, and these floors are supported by masonry arches in cases where the tail-water flows underneath the station after leaving the wheels. Station roofs are usually supported by steel trusses or I-beams, and slate and iron are favorite roof materials. With iron roof-plates an interior lining of wood, asbestos, or some other poor conductor of heat is much used to prevent the condensation of water on the under side of the roof in cold weather. Walls of water-power stations are usually given sufficient thickness of masonry to support all loads that come upon them without the aid of steel columns. In some cases where cranes do not extend entirely across their stations, one end of each crane is supported by one of the station walls and the other end Fig. 36.—Steel Penstocks at Chamblay Power-house. The Garvin’s Falls station, on the Merrimac River, rests on arches of stone masonry through which the tail-water passes, and the brick walls are water-proofed to an elevation eight feet above the floor. At twenty feet above the floor the twenty-four-inch brick walls on the two longer sides are reduced to eight inches in thickness, thus forming benches each sixteen inches wide on which the crane travels. Arches of stone masonry support the twenty-four-inch brick walls of the station at Red Bridge, on the Chicopee River, and these walls on the two longer sides decrease in thickness to twelve inches at an elevation of twenty-one feet above the floor, thus forming benches twelve inches wide for the ends of the crane. One concrete wall of the Santa Ana station is 2.5 feet thick to a distance It is not uncommon to locate horizontal turbines in a room separate from that occupied by the generators to which they are direct-connected, in order to protect the latter from water in the event of a break in penstocks or wheel cases. In cases of this sort the shafts connecting wheels and generators pass through the wall between them. The horizontal turbines may be located at the bottom of a canal whose water presses against the wall through which the wheel shafts pass, or they may be contained in iron cases at the ends of penstocks. In this latter case an extension of the station is often provided for a wheel room to contain these cases. Such wheel rooms are long, narrow, low-roofed and parallel to the generator rooms of their stations. The floors of these wheel rooms are at nearly the same levels as the floors of generator rooms, but elevations of their roofs above the floors are much less than like elevations in the main parts of the stations. The Garvin’s Falls, Red Bridge, and Apple River stations have wheel rooms of the type just described. With impulse-wheels to which water passes in planes at right angles to their shafts it is desirable, in order to avoid changes in the direction of water pipes, that direct-connected wheels and generators occupy the same room, and this is the arrangement at the Colgate, Electra, Santa Ana, Mill Creek, and many other power-houses using such equipments. The area of a wheel room may frequently be reduced at stations operating direct-connected horizontal-pressure turbines under low heads by placing the wheels at the bottom of the canal which has one side of the station or generator room for a retaining wall. This plan was adopted at the Birchem Bend plant with a head of fourteen feet, and at the Sault Ste. Marie station where the head of water is about twenty feet. Vertical wheels direct-connected to generators must be directly underneath the main room of their station, and may be in a canal over which the station is built, in a wheel room that forms its lower part, or in a wheel pit and supplied with water through penstocks, as at the Niagara Falls plants. Step-up transformers developing very high voltages are not an element of safety in a generator room, and the better practice is to locate them in a separate apartment by themselves, if not in a separate building. For the Niagara Falls plant, the transformers that deliver three-phase current at 22,000 volts are located in a building across the canal from the generating plant. At CaÑon Ferry the transformers operating at 50,000 Fig. 37.—One of the Turbine Wheels at Spier Falls on the Hudson River. Water supplied to horizontal turbine wheels under moderate heads usually enters the station by penstocks on one side and leaves it by the tail-race on the other, but this is not true in every case. At the Birchem Bend plant, the canal in which the wheels are located being between the Where power is derived from water delivered under great head from pipe nozzles to impulse-wheels, stations are usually well above the water levels of streams into which they discharge, and passages for tail-water underneath the station shrink to small tunnels through their foundations. Seven of these tunnels have a total width of less than 25 feet at the Santa Ana River station, which is 127 feet long, and where the head of water is 728 feet. At the Colgate plant, with its head of 700 feet, the water, at times of light load, instead of flowing out of its passages underneath the station, shoots from the pipe nozzles clear across the North Yuba River on the bank of which the station stands. Fig. 38.—Power Plant of Ludlow Manufacturing Company. Larger section (173 kB) In a comparison of floor areas per kilowatt of main generator capacities in electric stations using water- and those using steam-power, the matter of space for transformers may be entirely omitted, because the extent of this space is independent of the type or location of water-wheels, or the difference of water and steam as motive powers. Where water-wheels and their connected generators occupy separate rooms, as is often the case with turbines under low pressures, the wheel room has a little less length, and is generally narrower than the generator room. Thus, at the Red Bridge station the generator room is 141 feet long and the wheel room about 127 feet, while the former is 33.33 feet and the latter 24 feet wide. So again at Apple River Falls the generator room is 140 by 30 feet and the wheel room 106 by 22 feet, the generator room in this Fig. 39.—Power-house on Payette River, Idaho. All types of water-power stations with direct-connected wheels and generators have much smaller floor areas per unit capacity than do steam-power stations with direct-connected horizontal units. Thus, the modern steam-driven station at Portsmouth, N. H., has a plan area in engine- and boiler-rooms of 16,871 square feet, and its total capacity in four direct-connected units is 4,400 kilowatts, so that the area amounts to 3.82 square feet per kilowatt rating of its generators. Of this area about 46 per cent is in the boiler-room. Floor Dimensions for Direct-connected, Horizontal
|