Adulteration of Wine.

Previous

It is sufficiently obvious, that few of those commodities, which are the objects of commerce, are adulterated to a greater extent than wine. All persons moderately conversant with the subject, are aware, that a portion of alum is added to young and meagre red wines, for the purpose of brightening their colour; that Brazil wood, or the husks of elderberries and bilberries,[27] are employed to impart a deep rich purple tint to red Port of a pale, faint colour; that gypsum is used to render cloudy white wines transparent;[28] that an additional astringency is imparted to immature red wines by means of oak-wood sawdust,[29] and the husks of filberts; and that a mixture of spoiled foreign and home-made wines is converted into the wretched compound frequently sold in this town by the name of genuine old Port.

Various expedients are resorted to for the purpose of communicating particular flavours to insipid wines. Thus a nutty flavour is produced by bitter almonds; factitious Port wine is flavoured with a tincture drawn from the seeds of raisins; and the ingredients employed to form the bouquet of high-flavoured wines, are sweet-brier, oris-root, clary, cherry laurel water, and elder-flowers.

The flavouring ingredients used by manufacturers, may all be purchased by those dealers in wine who are initiated in the mysteries of the trade; and even a manuscript recipe book for preparing them, and the whole mystery of managing all sorts of wines, may be obtained on payment of a considerable fee.

The sophistication of wine with substances not absolutely noxious to health, is carried to an enormous extent in this metropolis. Many thousand pipes of spoiled cyder are annually brought hither from the country, for the purpose of being converted into factitious Port wine. The art of manufacturing spurious wine is a regular trade of great extent in this metropolis.

"There is, in this city, a certain fraternity of chemical operators, who work underground in holes, caverns, and dark retirements, to conceal their mysteries from the eyes and observation of mankind. These subterraneous philosophers are daily employed in the transmutation of liquors; and by the power of magical drugs and incantations, raising under the streets of London the choicest products of the hills and valleys of France. They can squeeze Bourdeaux out of the sloe, and draw Champagne from an apple. Virgil, in that remarkable prophecy,

Incultisque ruhens pendebit sentibus uva.
Virg. Ecl. iv. 29.
The ripening grape shall hang on every thorn.

seems to have hinted at this art, which can turn a plantation of northern hedges into a vineyard. These adepts are known among one another by the name of Wine-brewers; and, I am afraid, do great injury, not only to her Majesty's customs, but to the bodies of many of her good subjects."[30]

The following are a few of the recipes employed in the manufacture of spurious wine:

To make British Port Wine.[31]—"Take of British grape wine, or good cyder, 4 gallons; of the juice of red beet root two quarts; brandy, two quarts; logwood 4 ounces; rhatany root, bruised, half a pound: first infuse the logwood and rhatany root in brandy, and a gallon of grape wine or cyder for one week; then strain off the liquor, and mix it with the other ingredients; keep it in a cask for a month, when it will be fit to bottle."

British Champagne.—"Take of white sugar, 8 pounds; the whitest brown sugar, 7 pounds, crystalline lemon acid, or tartaric acid, 1 ounce and a quarter, pure water, 8 gallons; white grape wine, two quarts, or perry, 4 quarts; of French brandy, 3 pints."

"Put the sugar in the water, skimming it occasionally for two hours, then pour it into a tub and dissolve in it the acid; before it is cold, add some yeast and ferment. Put it into a clean cask and add the other ingredients. The cask is then to be well bunged, and kept in a cool place for two or three months; then bottle it and keep it cool for a month longer, when it will be fit for use. If it should not be perfectly clear after standing in the cask two or three months, it should be rendered so by the use of isinglass. By adding 1 lb. of fresh or preserved strawberries, and 2 ounces of powdered cochineal, the PINK Champagne may be made."

Southampton Port.[32]—"Take cyder, 36 gallons; elder wine, 11 gallons; brandy, 5 gallons; damson wine, 11 gallons; mix."

The particular and separate department in this factitious wine trade, called crusting, consists in lining the interior surface of empty wine-bottles, in part, with a red crust of super-tartrate of potash, by suffering a saturated hot solution of this salt, coloured red with a decoction of Brazil-wood, to crystallize within them; and after this simulation of maturity is perfected, they are filled with the compound called Port wine.

Other artisans are regularly employed in staining the lower extremities of bottle-corks with a fine red colour, to appear, on being drawn, as if they had been long in contact with the wine.

The preparation of an astringent extract, to produce, from spoiled home-made and foreign wines, a "genuine old Port," by mere admixture; or to impart to a weak wine a rough austere taste, a fine colour, and a peculiar flavour; forms one branch of the business of particular wine-coopers: while the mellowing and restoring of spoiled white wines, is the sole occupation of men who are called refiners of wine.

We have stated that a crystalline crust is formed on the interior surface of bottles, for the purpose of misleading the unwary into a belief that the wine contained in them is of a certain age. A correspondent operation is performed on the wooden cask; the whole interior of which is stained artificially with a crystalline crust of super-tartrate of potash, artfully affixed in a manner precisely similar to that before stated. Thus the wine-merchant, after bottling off a pipe of wine, is enabled to impose on the understanding of his customers, by taking to pieces the cask, and exhibiting the beautiful dark coloured and fine crystalline crust, as an indubitable proof of the age of the wine; a practice by no means uncommon, to flatter the vanity of those who pride themselves in their acute discrimination of wines.

These and many other sophistications, which have long been practised with impunity, are considered as legitimate by those who pride themselves for their skill in the art of managing, or, according to the familiar phrase, doctoring wines. The plea alleged in exculpation of them, is, that, though deceptive, they are harmless: but even admitting this as a palliation, yet they form only one department of an art which includes other processes of a tendency absolutely criminal.

Several well-authenticated facts have convinced me that the adulteration of wine with substances deleterious to health, is certainly practised oftener than is, perhaps, suspected; and it would be easy to give some instances of very serious effects having arisen from wines contaminated with deleterious substances, were this a subject on which I meant to speak. The following statement is copied from the Monthly Magazine for March 1811, p. 188.

"On the 17th of January, the passengers by the Highflyer coach, from the north, dined, as usual, at Newark. A bottle of Port wine was ordered; on tasting which, one of the passengers observed that it had an unpleasant flavour, and begged that it might be changed. The waiter took away the bottle, poured into a fresh decanter half the wine which had been objected to, and filled it up from another bottle. This he took into the room, and the greater part was drank by the passengers, who, after the coach had set out towards Grantham, were seized with extreme sickness; one gentleman in particular, who had taken more of the wine than the others, it was thought would have died, but has since recovered. The half of the bottle of wine sent out of the passengers' room, was put aside for the purpose of mixing negus. In the evening, Mr. Bland, of Newark, went into the hotel, and drank a glass or two of wine and water. He returned home at his usual hour, and went to bed; in the middle of the night he was taken so ill, as to induce Mrs. Bland to send for his brother, an apothecary in the town; but before that gentleman arrived, he was dead. An inquest was held, and the jury, after the fullest enquiry, and the examination of the surgeons by whom the body was opened, returned a verdict of—Died by Poison."

The most dangerous adulteration of wine is by some preparations of lead, which possess the property of stopping the progress of acescence of wine, and also of rendering white wines, when muddy, transparent. I have good reason to state that lead is certainly employed for this purpose. The effect is very rapid; and there appears to be no other method known, of rapidly recovering ropy wines. Wine merchants persuade themselves that the minute quantity of lead employed for that purpose is perfectly harmless, and that no atom of lead remains in the wine. Chemical analysis proves the contrary; and the practice of clarifying spoiled white wines by means of lead, must be pronounced as highly deleterious.

Lead, in whatever state it be taken into the stomach, occasions terrible diseases; and wine, adulterated with the minutest quantity of it, becomes a slow poison. The merchant or dealer who practises this dangerous sophistication, adds the crime of murder to that of fraud, and deliberately scatters the seeds of disease and death among those consumers who contribute to his emolument. If to debase the current coin of the realm be denounced as a capital offence, what punishment should be awarded against a practice which converts into poison a liquor used for sacred purposes.

Dr. Watson[33] relates, that the method of adulterating wine with lead, was at one time a common practice in Paris.

Dr. Warren[34] states an instance of thirty-two persons having become severely ill, after drinking white wine that had been adulterated with lead. One of them died, and one became paralytic.

In Graham's Treatise on Wine-Making,[35] under the article of Secrets, belonging to the mysteries of vintners, p. 31, lead is recommended to prevent wine from becoming acid. The following lines are copied from Mr. Graham's work:

"To hinder Wine from turning.

"Put a pound of melted lead, in fair water, into your cask, pretty warm, and stop it close."

"To soften Grey Wine.

"Put in a little vinegar wherein litharge has been well steeped, and boil some honey, to draw out the wax. Strain it through a cloth, and put a quart of it into a tierce of wine, and this will mend it."


The ancients knew that lead rendered harsh wines milder, and preserved it from acidity, without being aware that it was pernicious: it was therefore long used with confidence; and when its effects were discovered, they were not ascribed to that metal, but to some other cause.[36] When the Greek and Roman wine merchants wished to try whether their wine was spoiled, they immersed in it a plate of lead;[37] if the colour of the lead were corroded, they concluded that their wine was spoiled. Wine may become accidentally impregnated with lead.

It is well known that bottles in which wine has been kept, are usually cleaned by means of shot, which by its rolling motion detaches the super-tartrate of potash from the sides of the bottles. This practice, which is generally pursued by wine-merchants, may give rise to serious consequences, as will become evident from the following case:[38]

"A gentleman who had never in his life experienced a day's illness, and who was constantly in the habit of drinking half a bottle of Madeira wine after his dinner, was taken ill, three hours after dinner, with a severe pain in the stomach and violent bowel colic, which gradually yielded within twelve hours to the remedies prescribed by his medical adviser. The day following he drank the remainder of the same bottle of wine which was left the preceding day, and within two hours afterwards he was again seized with the most violent colliquative pains, headach, shiverings, and great pain over the whole body. His apothecary becoming suspicious that the wine he had drank might be the cause of the disease, ordered the bottle from which the wine had been decanted to be brought to him, with a view that he might examine the dregs, if any were left. The bottle happening to slip out of the hand of the servant, disclosed a row of shot wedged forcibly into the angular bent-up circumference of it. On examining the beads of shot, they crumbled into dust, the outer crust (defended by a coat of black lead with which the shot is glazed) being alone left unacted on, whilst the remainder of the metal was dissolved. The wine, therefore, had become contaminated with lead and arsenic, the shot being a compound of these metals, which no doubt had produced the mischief."

TEST FOR DETECTING THE DELETERIOUS ADULTERATIONS OF WINE.

A ready re-agent for detecting the presence of lead, or any other deleterious metal in wine, is known by the name of the wine test. It consists of water saturated with sulphuretted hydrogen gas, acidulated with muriatic acid. By adding one part of it, to two of wine, or any other liquid suspected to contain lead, a dark coloured or black precipitate will fall down, which does not disappear by an addition of muriatic acid; and this precipitate, dried and fused before the blowpipe on a piece of charcoal, yields a globule of metallic lead. This test does not precipitate iron; the muriatic acid retains iron in solution when combined with sulphuretted hydrogen; and any acid in the wine has no effect in precipitating any of the sulphur of the test liquor. Or a still more efficacious method is, to pass a current of sulphuretted hydrogen gas through the wine, in the manner described, p. 70, having previously acidulated the wine with muriatic acid.

The wine test sometimes employed is prepared in the following manner:—Mix equal parts of finely powdered sulphur and of slacked quick-lime, and expose it to a red heat for twenty minutes. To thirty-six grains of this sulphuret of lime, add twenty-six grains of super-tartrate of potassa; put the mixture into an ounce bottle, and fill up the bottle with water that has been previously boiled, and suffered to cool. The liquor, after having been repeatedly shaken, and allowed to become clear, by the subsidence of the undissolved matter, may then be poured into another phial, into which about twenty drops of muriatic acid have been previously put. It is then ready for use. This test, when mingled with wine containing lead or copper, turns the wine of a dark-brown or black colour. But the mere application of sulphuretted hydrogen gas to wine, acidulated by muriatic acid, is a far more preferable mode of detecting lead in wine.

M. Vogel[39] has lately recommended acetate of lead as a test for detecting extraneous colours in red wine. He remarks, that none of the substances that can be employed for colouring wine, such as the berries of the Vaccinium Mirtillus (bilberries), elderberries, and Campeach wood, produce with genuine red wine, a greenish grey precipitate, which is the colour that is procured by this test by means of genuine red wines.

Wine coloured with the juice of the bilberries, or elderberries, or Campeach wood, produces, with acetate of lead, a deep blue precipitate; and Brazil-wood, red saunders, and the red beet, produce a colour which is precipitated red by acetate of lead. Wine coloured by beet root is also rendered colourless by lime water; but the weakest acid brings back the colour. As the colouring matter of red wines resides in the skin of the grape, M. Vogel prepared a quantity of skins, and reduced them to powder. In this state he found that they communicated to alcohol a deep red colour: a paper stained with this colour was rendered red by acids and green by alkalies.

M. Vogel made a quantity of red wine from black grapes, for the purpose of his experiments; and this produced the genuine greyish green precipitate with acetate of lead. He also found the same coloured precipitate in two specimens of red wine, the genuineness of which could not be suspected; the one from Chateau-Marguaux, and the other from the neighbourhood of Coblentz.

SPECIFIC DIFFERENCES, AND COMPONENT PARTS OF WINE.

Every body knows that no product of the arts varies so much as wine; that different countries, and sometimes the different provinces of the same country, produce different wines. These differences, no doubt, must be attributed chiefly to the climate in which the vineyard is situated—to its culture—the quantity of sugar contained in the grape juice—the manufacture of the wine; or the mode of suffering its fermentation to be accomplished. If the grapes be gathered unripe, the wine abounds with acid; but if the fruit be gathered ripe, the wine will be rich. When the proportion of sugar in the grape is sufficient, and the fermentation complete, the wine is perfect and generous. If the quantity of sugar be too large, part of it remains undecomposed, as the fermentation is languid, and the wine is sweet and luscious; if, on the contrary, it contains, even when full ripe, only a small portion of sugar, the wine is thin and weak; and if it be bottled before the fermentation be completed, part of the sugar remains undecomposed, the fermentation will go on slowly in the bottle, and, on drawing the cork, the wine sparkles in the glass; as, for example, Champagne. Such wines are not sufficiently mature. When the must is separated from the husk of the red grape before it is fermented, the wine has little or no colour: these are called white wines. If, on the contrary, the husks are allowed to remain in the must while the fermentation is going on, the alcohol dissolves the colouring matter of the husks, and the wine is coloured: such are called red wines. Hence white wines are often prepared from red grapes, the liquor being drawn off before it has acquired the red colour; for the skin of the grape only gives the colour. Besides in these principal circumstances, wines vary much in flavour.

All wines contain one common and identical principle, from which their similar effects are produced; namely, brandy or alcohol. It is especially by the different proportions of brandy contained in wines, that they differ most from one another. When wine is distilled, the alcohol readily separates. The spirit thus obtained is well known under the name of brandy.

All wines contain also a free acid; hence they turn blue tincture of cabbage, red. The acid found in the greatest abundance in grape wines, is tartaric acid. Every wine contains likewise a portion of super-tartrate of potash, and extractive matter, derived from the juice of the grape. These substances deposit slowly in the vessel in which they are kept. To this is owing the improvement of wine from age. Those wines which effervesce or froth, when poured into a glass, contain also carbonic acid, to which their briskness is owing. The peculiar flavour and odour of different kinds of wines probably depend upon the presence of a volatile oil, so small in quantity that it cannot be separated.

EASY METHOD OF ASCERTAINING THE QUANTITY OF BRANDY CONTAINED IN VARIOUS SORTS OF WINE.

The strength of all wines depends upon the quantity of alcohol or brandy which they contain. Mr. Brande, and Gay-Lussac, have proved, by very decisive experiments, that all wines contain brandy or alcohol ready formed. The following is the process discovered by Mr. Brande, for ascertaining the quantity of spirit, or brandy, contained in different sorts of wine.

EXPERIMENT.

Add to eight parts, by measure, of the wine to be examined, one part of a concentrated solution of sub-acetate of lead: a dense insoluble precipitate will ensue; which is a combination of the test liquor with the colouring, extractive, and acid matter of the wine. Shake the mixture for a few minutes, pour the whole upon a filtre, and collect the filtered fluid. It contains the brandy or spirit, and water of the wine, together with a portion of the sub-acetate of lead. Add, in small quantities at a time, to this fluid, warm, dry, and pure sub-carbonate of potash (not salt of tartar, or sub-carbonate of potash of commerce), which has previously been freed from water by heat, till the last portion added remains undissolved. The brandy or spirit contained in the fluid will become separated; for the sub-carbonate of potash abstracts from it the whole of the water with which it was combined; the brandy or spirit of wine forming a distinct stratum, which floats upon the aqueous solution of the alkaline salt. If the experiment be made in a glass tube, from one-half inch to two inches in diameter, and graduated into 100 equal parts, the per centage of spirit, in a given quantity of wine, may be read off by mere inspection. In this manner the strength of any wine may be examined.

Tabular View, exhibiting the Per Centage of Brandy or Alcohol[40] contained in various kinds of Wines, and other fermented Liquors.[41]

Proportion of Spirit
per Cent.
by measure.
Lissa 26,47
Ditto 24,35
Average 25,41
Raisin Wine 26,40
Ditto 25,77
Ditto 23,30
Average 25,12
Marcella 26,03
Ditto 25,05
Average 25,09
Madeira 24,42
Ditto 23,93
Ditto (Sercial) 21,40
Ditto 19,24
Average 22,27
Port 25,83
Ditto 24,29
Ditto 23,71
Ditto 23,39
Ditto 22,30
Ditto 21,40
Ditto 19,96
Average 22,96
Sherry 19,81
Ditto 19,83
Ditto 18,79
Ditto 18,25
Average 19,17
Teneriffe 19,79
Colares 19,75
Lachryma Christi 19,70
Constantia (White) 19,75
Ditto (Red) 18,92
Lisbon 18,94
Malaga (1666) 18,94
Bucellas 18,49
Red Madeira 22,30
Ditto 18,40
Average 20,35
Cape Muschat 18,25
Cape Madeira 22,94
Ditto 20,50
Ditto 18,11
Average 20,51
Grape Wine 18,11
Calcavella 19,20
Ditto 18,10
Average 18,65
Vidonia 19,25
Alba Flora 17,26
Malaga 17,26
Hermitage (White) 17,43
Roussillon 19,00
Ditto 17,20
Average 18,13
Proportion of Spirit
per Cent.
by measure.
Claret 17,11
Ditto 16,32
Ditto 14,08
Ditto 12,91
Average 15,10
Malmsey Madeira 16,40
Lunel 15,52
Sheraaz 15,52
Syracuse 15,28
Sauterne 14,22
Burgundy 16,60
Ditto 15,22
Ditto 14,53
Ditto 11,95
Average 14,57
Hock 14,37
Ditto 13,00
Ditto (old in cask) 8,68
Average 12,08
Nice 14,62
Barsac 13,86
Tent 13,30
Champagne (Still) 13,80
Ditto (Sparkling) 12,80
Ditto (Red) 12,56
Ditto (ditto) 11,30
Average 12,61
Red Hermitage 12,32
Vin de Grave 13,94
Ditto 12,80
Average 13,37
Frontignac 12,79
Cote Rotie 12,32
Gooseberry Wine 11,84
Currant Wine 20,55
Orange Wine aver. 11,26
Tokay 9,88
Elder Wine 9,87
Cyder highest aver. 9,87
Ditto lowest ditto 5,21
Perry average 7,26
Mead 7,32
Ale (Burton) 8,88
Ditto (Edinburgh) 6,20
Ditto (Dorchester) 5,50
Average 6,87
Brown Stout 6,80
London Porter aver. 4,20
Do. Small Beer, do. 1,28
Brandy 53,39
Rum 53,68
Gin 51,60
Scotch Whiskey 54,32
Irish ditto 53,99

CONSTITUTION OF HOME-MADE WINES.

Besides grapes, the most valuable of the articles of which wine is made, there are a considerable number of fruits from which a vinous liquor is obtained. Of such, we have in this country the gooseberry, the currant, the elderberry, the cherry, &c. which ferment well, and affords what are called home-made wines.

They differ chiefly from foreign wines in containing a much larger quantity of acid. Dr. Macculloch[42] has remarked that the acid in home-made wines is principally the malic acid; while in grape wines it is the tartaric acid.

The great deficiency in these wines, independent of the flavour, which chiefly originates, not from the juice, but from the seeds and husks of the fruits, is the excess of acid, which is but imperfectly concealed by the addition of sugar. This is owing, chiefly, as Dr. Macculloch remarks, to the tartaric acid existing in the grape juice in the state of super-tartrate of potash, which is in part decomposed during the fermentation, and the rest becomes gradually precipitated; whilst the malic acid exists in the currant and gooseberry juice in the form of malate of potash; which salt does not appear to suffer a decomposition during the fermentation of the wine; and, by its greater solubility, is retained in the wine. Hence Dr. Macculloch recommends the addition of super-tartrate of potash, in the manufacture of British wines. They also contain a much larger proportion of mucilage than wines made from grapes. The juice of the gooseberry contains some portion of tartaric acid; hence it is better suited for the production of what is called English Champagne, than any other fruit of this country.

FOOTNOTES:

[27] Dried bilberries are imported from Germany, under the fallacious name of berry-dye.

[28] The gypsum had the property of clarifying wines, was known to the ancients. "The Greeks and Romans put gypsum in their new wines, stirred it often round, then let it stand for some time; and when it had settled, decanted the clear liquor. (Geopon, lib. vii. p. 483, 494.) They knew that the wine acquired, by this addition, a certain sharpness, which it afterwards lost; but that the good effects of the gypsum were lasting."

[29] Sawdust for this purpose is chiefly supplied by the ship-builders, and forms a regular article of commerce of the brewers' druggists.

[30] Tatler, vol. viii. p. 110, edit. 1797. 8vo.

[31] Dr. Reece's Gazette of Health, No. 7.

[32] Supplement to the Pharmacopoeias, p. 245.

[33] Chemical Essays, vol. viii. p. 369.

[34] Medical Trans. vol. ii. p. 80.

[35] This book, which has run through many editions, may be supposed to have done some mischief.—In the Vintner's Guide, 4th edit. 1770, p. 67, a lump of sugar of lead, of the size of a walnut, and a table-spoonful of sal enixum, are directed to be added to a tierce (forty-two gallons) of muddy wine, to cure it of its muddiness.

[36] Beckman's History of Inventions, vol. i. p. 398.

[37] Pliny, lib. xiv. cap. 20.

[38] Philosophical Magazine, 1819, No. 257, p. 229.

[39] Journ. Pharm. iv. 56 (Feb. 1818.) and Thomson's Annals, Sept. 1818, p. 232.

[40] Of a Specific Gravity. 825.

[41] Philosophical Trans. 1811, p. 345; 1813, p. 87; Journal of Science and the Arts, No. viii. p. 290.

[42] Macculloch on Wine. This is by far the best treatise published in this country on the Manufacture of Home-made Wines.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page