The world will not always be at war. Interminable as the conflict by which it is now racked seems, and endless as appear the resources of the nations participating in it, the time must come when victory or sheer exhaustion shall compel peace. People talk of that peace being permanent. That is perhaps too sanguine a dream while human nature remains what it is, and nations can still be as covetous, ambitious, and heedless of others' rights as are individuals. But beyond doubt a prolonged period of peace awaits the world. What then is to be the future of the aircraft and the submarine which had to wait for war to secure any recognition from mankind of their prodigious possibilities? Of the future of the aircraft there can be no doubt. Its uses in peace will be innumerable. Poor old Count Zeppelin, who thought of his invention only as a weapon of war, nevertheless showed how it might be successfully adapted to the needs of peace merely as a byproduct. As for the airplane both for sport and business its opportunities are endless. Easy and inexpensive to build, simple to operate with but little training on the part of the aviator, it will be made the common carrier of all nations. Already the United States is maintaining an aËrial mail service in Alaska. Already But the future of the submarine is more dubious. Always it will be a potent weapon of war. It may indeed force the relegation of dreadnoughts to the scrap heap. But of its peaceful services there is more doubt. That it can be made a cargo carrier is unquestionably true. But to what good? There is no intelligent reason for carrying cargoes slowly under water which might just as well be carried swiftly on the surface unless war compels concealment. Underwater navigation must always be slower and more expensive than surface navigation, nor does it seem probable that the underwater boats can ever equal in size ordinary ships, though undoubtedly their present proportions are going to be greatly increased. As a result of the German submarine campaign it is possible that the United States may develop a fleet of underwater merchantmen to circumvent the enemy while this war continues, though there has been but little discussion of it. But even so, commonsense would indicate that such a fleet would be abandoned on the restoration of peace. If anything is to be done toward making the submarine a vessel of ordinary everyday use the present double system of motors—the Diesels for surface navigation and the electric for submerged service—will have to be abandoned. Inventors This was proved by the two successful trips made by the unarmed German merchant submarine Deutschland between Germany and the United States in 1916. Loaded with a cargo of dyestuffs and chemicals she left Bremen on June 14, 1916, and arrived in Baltimore early in July. After a short stay, during which she took on a full return cargo, consisting chiefly of rubber and metal, she started on August 1, 1916, for her return trip to Bremen where she arrived safely soon after August 15, 1916. Once more, in October of the same year she made a successful round trip, docking this time in New London. There was considerable talk about additional trips by other German merchant submarines, but none of them were ever carried out. It has never become known whether this was due to the loss of these merchant submarines or to political relations between Germany and the United States which were then gradually assuming a less friendly form. Photo by International Film Service. A Submarine Built for Chili, Passing through Cape Cod Canal. Of course, it is true that such boats are blockade runners and in a way, therefore, part and parcel of warfare. During her stay in the United States, very few people were permitted to get more than a glance of the Deutschland. As a result, comparatively little became known regarding her mechanical details. The Scientific American, however, in its issue of July 22, 1916, gives a fairly detailed description of this first merchant submarine. From this account we learn that the Deutschland conforms rather closely to the typical German naval U-boat. The hull proper consists of an internal cigar-shaped, cylindrical structure, which extends from stem to stern, and in its largest diameter measures about twenty feet. Enclosing this hull is a lighter false hull, which is perforated, to permit the entrance and exit of the sea-water, and is so shaped as to give the submarine a fairly good ship model for driving at high speed on the surface and at a much lesser speed submerged. The upper portion of the false hull does not present such a flat deck-like appearance as is noticeable in the naval U-boats. In fact, the whole modelling of the Deutschland, as compared with the naval boats, suggests that she has been fulled out somewhat, with a view to obtaining the necessary displacement for cargo carrying. The length of the Deutschland is about 315 feet; beam 30 feet, and draught 17 feet. For surface propulsion and for charging the batteries, the boat carries two 4-cylinder, Diesel, heavy-oil motors of about 600 H. P. each. The speed at the surface is from 12 to 13 knots; and submerged it is 7 knots. At the surface the displacement of the boat is about 2000 tons, and she has a cargo capacity of about 700 tons. The freeboard to the main deck, which runs the full length of the boat, but is only about 5-½ feet wide, is about 6 feet, and the cockpit at the top of the conning tower is about 15 feet above the water. This cockpit, by the way, is suggestive of the protection afforded a chauffeur in an automobile, there being a shield in front of the quartermaster, so shaped as to throw the wind and spray upwards and clear of his face. Two periscopes are provided; one at the forward end of the conning tower, and the other, of larger diameter, being forward and on the starboard of the conning tower. An The commander of the Deutschland, Captain Paul KÖnig, was before the war a popular captain of North German Lloyd liners. He has published a very vivid and interesting account of the Deutschland's trip, the Voyage of the Deutschland. In this book, he tells us how he was offered this novel command while the plans were still being drawn and that he immediately accepted, making, however, the proviso "if the thing really comes off." The men, backing the venture, lost no time and, so Captain KÖnig tells us, in less than two months a telegram called me to Berlin to an important conference. Here I looked at sketches, plans, and working drawings until my eyes swam. Four more months passed which I utilized to the full. I then went to Kiel and saw a remarkable framework of steel slowly take shape upon the stocks across the way at Gaarden. Rotund, snug, and harmless the thing lay there. Inside it were hidden all the countless, complicated, and powerful features of those sketches and working drawings. I cannot boast that the reality as executed in steel and brass was any easier to grasp than the endless network of lines and circles which had bewildered me when inspecting the blueprints. Those of you who have seen illustrations and photographs of the interior of the "central station" or the "turret" of a submarine, will understand what I mean. And should you have entered a submarine itself and felt yourself hopelessly confused by the bewildering chaos of wheels, vents, screws, cocks, pipes, conduits—above, below, and all But after this monster, with its tangle of tubes and pipes, had been duly christened, and its huge grey-green body had slid majestically into the water, it suddenly became a ship. It swam in its element as though born to it—as though it had never known another. For the first time I trod the tiny deck and mounted the turret to the navigation platform. From here I glanced down and was surprised to see beneath me a long, slender craft—with gracious lines and dainty contours. Only the sides, where the green body vaulted massively above the water, gave an indication of the huge size of the hull. I felt pride and rapture as my eye took in this picture. The fabric swayed slightly beneath my feet—an impressive combination of power and delicacy. And now I know that what had at first seemed to me nothing more than the product of some mad phantasy on the part of the technicians was in reality a ship. It was a ship in which oceans might be crossed, a real ship, to which the heart of an old sailor like myself might safely attach itself. Then came a short period of trial trips and diving tests, all of which were carried off successfully, and at last the day of departure arrived. As soon as the last escort had turned around a final diving test was ordered. Instantly the response came back from the turret and the central station, and the men hurried to their posts. The oil engines were still hammering away at a mad rate. I left the manhole of the turret. The cover was battened down, the engines stopped at the same moment. We felt a slight pressure in our ears for a moment. We were cut off from outside and silence reigned. But this silence was merely an illusion—and was due to the change. Permission of Scientific American. A Submarine Entrapped by Nets. "Open the diving-valves! Submerge!" You have the sensation of growing heavier and sinking as the boat grows heavier and sinks, even though you may not be able to see through the turret window, or the periscope, how the bows are gradually submerged and the water climbs higher and higher up the turret until all things without are wrapped in the eerie twilight of the depths. The faithful lamps burned, however, and then a real silence suddenly ensued. There was no sound but the gentle trembling rhythm of the electric engines. I then gave the order: "Submerge to twenty meters!" "Both engines half steam ahead!" I was able to follow our submersion by means of the manometer. Through flooding the tanks, the boat is given several tons over-weight and the enclosed ship's space is made heavier than the displaced quantity of water. The titanic fish, therefore, began to sink downward in its element, that is to say, it began, in a certain sense, to fall. At the same time the electric engines are put into motion and the propulsive force of the propellers acts upon the diving rudders and causes the sinking to become a gliding. "Twenty meters—even keel!" "Rudder set!" So we forged ahead at a depth of twenty meters. Of course we are "blind" under such conditions and can regulate our movements only by means of the depth recorder and that precious little jewel of the boat, our compass. No ray of light reached us any longer from without, the periscope was submerged long ago and the steel safety covers over the windows were closed. We had been metamorphosed completely into a fish. Orders were then given to rise again. The Deutschland carried out this manoeuvre with the same facility with which she had taken the initial dive of her long voyage. In record time the ballast tanks were emptied and the change from electric motors to oil engines was completed without further loss of time. The boat was started at top surface speed towards her ultimate goal, the United States. On the following day the Deutschland barely escaped running foul of a British submarine chaser, disguised as a neutral merchantman. A quick dive alone saved her. When she came up again a wild storm and a heavy sea were raging. Even before the change from the electric motors to the oil engines had been completed, another dangerous looking vessel appeared and before "Alarm! Dive quickly! Flood!" "Set diving rudder!" "Twenty meters' depth!" The commands were uttered in almost one breath. But the execution of them! To attempt to dive with such a sea running was sheer madness, as experience has taught us. What was I to do? The destroyer might have seen us already! Well, we knew we must get under—and as quickly as possible. The men in the central below me were working away in silent haste. All the exhausts were opened wide, the compressed air hissed from the tanks—the diving vents were chanting in all possible keys. I stood with my lips pressed together and stared out of the turret window upon the tossing sea, and watched for the first sign of our going down. But our deck remained still visible and we were continually lifted into the air by some wave. There was not a moment to be lost. I ordered the diving rudder to be set still more sharply and both engines to drive ahead with full power. The whole vessel quivered and thrilled under the increased pressure of the engines and made several leaps. She staggered about in the furious seas—but still seemed loath to leave the surface. Then she gave a jerk and her bows suddenly dipped and cut into the flood. She began to sink into the depths at an ever-increasing angle. The coming daylight vanished from the windows of the turret, the manometer in rapid succession showed 2—3—6—10 meters' depth. But the angle of the boat also began to increase. We staggered about, leaned back, slipped off our feet. We then lost our footing entirely—for the floor of the We had not yet seized the full significance of this new situation when there came a severe shock. We were hurled to the floor and everything that was not fastened down went flying in all directions. We found ourselves in the queerest attitudes—and stared into one another's faces. There was a grim silence for a moment, then First Officer Krapohl remarked dryly: "Well, we seem to have arrived!" This broke the ghastly tension. We were all rather pale around the gills, but at once tried to get our bearings. What had happened? What had caused this unnatural inclination of the boat? And why were the engines above us raving at intervals in a way that made the whole boat roar from stem to stern? Before any of us had arrived at any solution of the mystery, our Chief Engineer, little Klees, had jumped up from his crouching position, and, swift as lightning, had swept the engine-signal dial around to "Stop!" And suddenly there was a deep silence. We slowly assembled our proper legs and arms and thought hard over what had happened. The vessel had slanted down toward the bows at an angle of about 36 degrees. She was standing, so to speak, on her head. Our bow was fast upon the bottom of the sea—our stern was still oscillating up and down like a mighty pendulum. The manometer showed a depth of about 15 meters. However, the Deutschland finally worked herself free and soon was again on the surface. Luck must have been with her, for she had suffered no damage and, in So the days went by and before long the merchant submarine had passed, without having been detected, beyond the territory in which British patrol boats were operating. Then came a succession of uneventful days and fine weather. Practically every day diving tests were made. One of these the captain describes as follows: During these experimental diving tests we were treated to a spectacle of fairy-like loveliness. I had set the rudder in such a way that the turret was travelling about three yards under water. Overhead the sun shone brilliantly and filled the deeps with a clear radiance. The pure water was luminous with colour—close at hand it was of a light azure blue, of fabulous clearness and transparent as glass. I could see the entire boat from the turret windows. The shimmering pearls of the air-bubbles which rise constantly from the body of the craft played about the entire length of the vessel from deck to bows, and every detail stood out in miraculous sharpness. Farther ahead there was a multi-coloured twilight. It seemed as if the prow kept pushing itself noiselessly into a wall of opalescent green which parted, glistening, and grew to an ethereal, rainbow-like translucency close at hand. We were spell-bound by this vision of beauty. The fairy-like effect was increased by medusÆ which, poised in the transparent blue, frequently became entangled in the wires of the mine-guards or the railings and glowed like trembling fires of rose, pale gold, and purple. But less pleasant things were in store for the Deutschland's crew. The nearer the boat came to the region of the Gulf Stream, the more violent the weather became. While in the Gulf Stream we had an outer temperature of 28° Celsius. This was about the warmth of the surrounding water. Fresh air no longer entered. In the engine-room two 6-cylinder combustion motors kept hammering away in a maddening two-four time. They hurled the power of their explosions into the whirling crankshafts. The red-hot breath of the consumed gases went crashing out through the exhausts, but the glow of these incessant firings remained in the cylinders and communicated itself to the entire oil-dripping environment of steel. A choking cloud of heat and oily vapour streamed from the engines and spread itself like a leaden pressure through the entire ship. During these days the temperature mounted to 53° Celsius. And yet men lived and worked in a hell such as this! The watch off duty, naked to the skin, groaned and writhed in their bunks. It was no longer possible to think of sleep. And when one of the men fell into a dull stupor, then he would be aroused by the sweat which ran incessantly over his forehead and into his eyes, and would awake to new torment. It was almost like a blessed deliverance when the eight hours of rest were over, and a new watch was called to the central or the engine-room. Redrawn from The Sphere. A Submarine Discharging a Torpedo. But there the real martyrdom began. Clad only in an undershirt and drawers, the men stood at their posts, a cloth wound about their foreheads to keep the running sweat But how long would we be able to endure this? I no longer kept a log during these days and I find merely this one note: "Temperature must not rise any higher if the men are to remain any longer in the engine-room." But they did endure it. They remained erect like so many heroes, they did their duty, exhausted, glowing hot, and bathed in sweat, until the storm centre lay behind us, until the weather cleared, until the sun broke through the clouds, and the diminishing seas permitted us once more to open the hatches. The Deutschland was now near her goal. Without any trouble she entered Hampton Roads and was docked at Baltimore. There her cargo was discharged and her return cargo loaded. This latter operation involved many difficulties. During her stay a United States Government Commission made a detailed inspection of the Deutschland to determine beyond all question her mercantile character. But at last the day of departure, August 1, had arrived. Properly escorted she made the trip down the Patapsco River and Chesapeake Bay. On her way down she made again diving trials which Captain KÖnig describes as follows: In order to see that everything else was tight and in good order, I gave the command to set the boat upon the sea bottom at a spot which, according to the reading upon the chart, had a depth of some 30 meters. Nothing of the sort happened. Instead of this the indicator upon the dial pointed to 32—to 33—to 35 meters.... I knocked against the glass with my finger—correct—the arrow was just pointing toward thirty-six. "Great thunder! what's up?" I cried, and reached for the chart. Everything tallied. Thirty meters were indicated at this spot and our reckoning had been most exact. And we continued to sink deeper and deeper. The dial was now announcing 40 meters. This was a bit too much for me. I called down to the central and got back the comforting answer that the large manometer was also indicating a depth of over forty meters! The two manometers agreed. This, however, did not prevent the boat from continuing to sink. The men in the central began to look at one another.... Ugh! it gives one a creepy feeling to go slipping away into the unknown amidst this infernal singing silence and to see nothing but the climbing down of the confounded indicator upon the white-faced dial.... There was nothing else to be seen in my turret. I glanced at the chart and then at the manometer in a pretty helpless fashion. In the meantime the boat sank deeper; forty-five meters were passed—the pointer indicated forty-eight meters. I began to think the depth of the Chesapeake Bay must have some limit; we surely could not be heading for the bottomless pit? Then—the boat halted at a depth of fifty meters without the slightest shock. There could be only one explanation; we must have sunk into a hole which had not been marked upon the chart. Permission of Scientific American. A German Submarine in Three Positions. When orders were now given to rise, it was found that the exhaust pumps refused to work. After a while, however, the chief engineer succeeded in getting them started. They reached the surface after about two hours of submergence. It was dark by the time the merchant submarine was approaching the three-mile limit. Outside of it hostile warships were lying in wait. That the Deutschland escaped them well illustrates the fact that submarines may be kept by various means from entering a bay or a harbour, but that to blockade their exit is practically impossible. This is how Captain KÖnig speaks of his escape. We knew that the most dangerous moment of our entire voyage was now approaching. We once more marked our exact position, and then proceeded to make all the preparations necessary for our breaking through. Then we dived and drove forward. All our senses were keyed to the utmost, our nerves taut to the breaking-point with that cold excitement which sends quivers through one's soul, the while outwardly one remains quite serene, governed by that clear and icy deliberation which is apt to possess a man who is fully conscious of the unknown perils toward which he goes.... We knew our path. We had already been informed that fishermen had been hired to spread their nets along certain stretches of the three-mile limit; nets in which we were supposed to entangle ourselves; nets into which devilish mines had very likely been woven.... Possibly these nets were merely attached to buoys which We were prepared for all emergencies, so that in case of extreme necessity we should be able to free ourselves of the nets. But all went well. It was a dark night. Quietly and peacefully the lighthouses upon the two capes sent forth their light, the while a few miles further out death lay lowering for us in every imaginable form. But while the English ships were racing up and down, jerking their searchlights across the waters and searching again and again in every imaginable spot, they little surmised that, at times within the radius of their own shadows, a periscope pursued its silent way, and under this periscope the U-Deutschland. That night at twelve o'clock, after hours of indescribable tension, I gave the command to rise. We Had Broken Through! Slowly the Deutschland rose to the surface, the tanks were blown out and the Diesel engines flung into the gearing. At our highest speed we now went rushing toward the free Atlantic. The homeward voyage was completed without untoward incident and long before the month had ended, the first—and probably last—merchant submarine was again safe and snug in her home port. The cargo-carrying submarine, however, is by no means the only type of underwater vessel engaged in peaceful pursuits which has been suggested so far. Mr. Simon Lake, the American submarine engineer and inventor, has frequently pointed out the commercial possibilities of the submarine. In the early part of 1916 a series of articles from his pen appeared in International Marine Engineering. They contained a number of apparently feasible suggestions First of all he tells of experiments made with submarines for navigation under ice. The proper development of this idea, of course, would be of immense commercial value. Many harbours in various parts of the world are inaccessible during the winter months for vessels navigating on the surface. Navigation on many important inland lakes likewise has to be stopped during that period. Submarines, built so that they can safely travel under the ice, would overcome these conditions and would make it possible to use most ice-bound ports throughout the entire year at least in Mr. Lake's view. Ever since Mr. Lake began inventing and building submarines he has been interested in the possibilities which submarines offer for the exploration of the sea-bottom and for the discovery of wrecks and recovery of their valuable cargoes. His first boat, the Argonaut, as we have heard, possessed a diving chamber for just such purposes. He has continued his investigations and experiments along this line, and in these articles he shows illustrations of submarine boats and devices adapted for such work. Properly financed and directed, the recovery of cargoes from wrecks undoubtedly would not only bring large financial returns to the backers of such a venture, but also do away with the immense waste which the total loss of sunken vessels and cargoes inflicts now on the world. Submarines in peace may yet recover for the use of man much of the wealth which submarines in war have sent to the bottom of the sea. Marine insurance, too, would be favourably affected by such an undertaking. Still one other commercial submarine boat is advocated by Mr. Lake. This is to be used for the location The design of this submarine oyster-dredging vessel is such that the vessel goes down to the bottom direct, and the water is forced out of the centre raking compartment so that the oysters may be seen by the operator in the control compartment. With only a few inches of water over them, headway is then given to the submarine and the oysters are automatically raked up, washed, and delivered through pipes into the cargo-carrying chambers. Centrifugal pumps are constantly delivering water from the cargo compartments, which induces a flow of water through the pipes leading from the "rake pans" with sufficient velocity to carry up the oysters and deposit them into the cargo holds. In this manner the bottom may be seen, and by "tracking" back and forth over the bottom the ground may be "cleaned up" at one operation. This boat has a capacity of gathering oysters from good ground at the rate of five thousand bushels per hour. The use of the submarine will make the collection of oysters more nearly like the method of reaping a field of grain, where one "swathe" systematically joins on to another, and the whole field is "cleaned up" at one operation. Man's greediness for profit has already driven the salmon from the rivers of New England where once they swarmed. Mechanical devices for taking them by the hundreds of thousands threaten a like result in the now teeming rivers of Washington and British Columbia. Mr. Lake's invention has the demerit of giving conscienceless profiteers the opportunity to obliterate the oyster from our national waters. Permission of Scientific American. Sectional View of a British Submarine. It does not appear, however, that, except as an engine of war the submarine offers much prospect of future development or future usefulness. And as we of the Indeed it is into just such a plan that they intelligently fit. Though not wholly successful in their operations against capital ships, they have demonstrated enough power to make nations hesitate henceforth before putting a score of millions into ponderous dreadnoughts which have to retire from submarine-infested waters as the British did in their very hour of triumph at Jutland. They have not nullified, but greatly reduced the value of overwhelming sea power such as the British have possessed. A navy greater than those of any two other nations has indeed kept the German ships, naval and commercial, locked in port. But less than two hundred inexpensive submarines bid fair to sweep the seas of all merchant ships—neutral as well as British unless by feverish building the nations can build ships faster than submarines can sink them. Huge navies may henceforth be unknown. The submarine has been the David of the war. It is a pity that its courage and efficiency have been exerted Aircraft and submarine! It is still on the cards that when the definitive history of the war shall be written, its outcome may be ascribed to one or the other of these novel weapons—the creation of American inventive genius. |